On Dini’s theorem and a metric on $C(X)$ topologically equivalent to the uniform metric
HTML articles powered by AMS MathViewer
- by Gerald Beer
- Proc. Amer. Math. Soc. 86 (1982), 75-80
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663870-7
- PDF | Request permission
Abstract:
Let $X$ be a compact metric space and let $UC(X)$ denote the u.s.c. real valued functions on $X$. Let $\tau$ be a topology on $UC(X)$. $\Omega \subset UC(X)$ is called a Dini class of functions induced by $\tau$ if (1) $\Omega$ is $\tau$-closed, (2) $C(X) \subset \Omega$, (3) for each $h \in \Omega$ whenever $\{ {h_n}\}$ is a decreasing sequence of u.s.c. functions convergent pointwise to $h$, then $\{ {h_n}\} \tau$-converges to $h$. By Dini’s theorem the topology of uniform convergence on $UC(X)$ induces $C(X)$ as its Dini class of functions. As a main result, when $X$ is locally connected we show that the hyperspace topology on $UC(X)$ obtained by identifying each u.s.c. function with the closure of its graph induces a larger Dini class of functions than $C(X)$, even though the restriction of this topology to $C(X)$ agrees with the topology of uniform convergence.References
- Gerald Beer, A natural topology for upper semicontinuous functions and a Baire category dual for convergence in measure, Pacific J. Math. 96 (1981), no. 2, 251–263. MR 637972, DOI 10.2140/pjm.1981.96.251
- Gerald Beer, Upper semicontinuous functions and the Stone approximation theorem, J. Approx. Theory 34 (1982), no. 1, 1–11. MR 647707, DOI 10.1016/0021-9045(82)90110-1
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310, DOI 10.1007/BFb0087685
- Ennio De Giorgi and Tullio Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 58 (1975), no. 6, 842–850 (Italian). MR 448194
- Szymon Dolecki, Gabriella Salinetti, and Roger J.-B. Wets, Convergence of functions: equi-semicontinuity, Trans. Amer. Math. Soc. 276 (1983), no. 1, 409–430. MR 684518, DOI 10.1090/S0002-9947-1983-0684518-7
- Ryszard Engelking, Topologia ogólna, Biblioteka Matematyczna [Mathematics Library], vol. 47, Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1975 (Polish). MR 0500779 E. Hewitt and C. Stromberg, Real and abstract analysis, Springer-Verlag, Berlin and New York, 1965.
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI 10.1016/0001-8708(69)90009-7
- Sam B. Nadler Jr., Hyperspaces of sets, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR 0500811 R. Royden, Real analysis, Macmillan, New York, 1968.
- R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32–45. MR 196599, DOI 10.1090/S0002-9947-1966-0196599-8
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 75-80
- MSC: Primary 26A15; Secondary 54B20, 54C35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663870-7
- MathSciNet review: 663870