On the minimal eigenvalue of the Laplacian operator for $p$-forms in conformally flat Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Domenico Perrone
- Proc. Amer. Math. Soc. 86 (1982), 103-108
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663876-8
- PDF | Request permission
Abstract:
Let $(M,g)$ be a compact orientable conformally flat Riemannian manifold and $^p{\lambda _1}$ the minimal eigenvalue of the Laplacian operator for $p$-forms. We prove that if there exists a positive constant $K$ such that $\rho \geqslant Kg$, where $\rho$ is the Ricci tensor of $M$, then $^p{\lambda _1} \geqslant Kp(n - p + 1)/(n - 1)$ for each $p$, $1 \leqslant p \leqslant n/2$, $(n = \dim M)$; moreover if the equality holds for some $p$ then $M$ is of constant curvature $\sigma = K/(n - 1)$.References
- Marcel Berger, Paul Gauduchon, and Edmond Mazet, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, Vol. 194, Springer-Verlag, Berlin-New York, 1971 (French). MR 0282313, DOI 10.1007/BFb0064643
- S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974 A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris, 1958.
- Domenico Perrone, Conformally flat manifolds and spectral geometry, Riv. Mat. Univ. Parma (4) 8 (1982), 317–330 (1983) (Italian, with English summary). MR 706856
- Udo Simon and Heinz Wissner, Geometry of the Laplace operator, Proceedings of the Conference on Algebra and Geometry (Kuwait, 1981), Kuwait Univ., Kuwait, 1982, pp. 171–191. MR 698272
- Mariko Tani, On a conformally flat Riemannian space with positive Ricci curvature, Tohoku Math. J. (2) 19 (1967), 227–231. MR 220213, DOI 10.2748/tmj/1178243319
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 103-108
- MSC: Primary 53C20; Secondary 58G25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663876-8
- MathSciNet review: 663876