Quantitative Helly-type theorems
HTML articles powered by AMS MathViewer
- by Imre Bárány, Meir Katchalski and János Pach
- Proc. Amer. Math. Soc. 86 (1982), 109-114
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663877-X
- PDF | Request permission
Abstract:
We establish some quantitative versions of Helly’s famous theorem on convex sets in Euclidean space. We prove, for instance, that if $\mathcal {C}$ is any finite family of convex sets in ${{\mathbf {R}}^d}$, such that the intersection of any $2d$ members of $\mathcal {C}$ has volume at least 1, then the intersection of all members belonging to $\mathcal {C}$ is of volume $\geqslant {d^{ - {d^2}}}$. A similar theorem is true for diameter, instead of volume. A quantitative version of Steinitz’ Theorem is also proved.References
- I. Bárány, M. Katchalski and J. Pach, Helly’s theorem, Amer. Math. Monthly (submitted).
L. Danzer, B. Grünbaum and V. Klee, Helly’s Theorem and its relatives, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., Providence, R. I., 1963, pp. 101-180.
- Branko Grünbaum, The dimension of intersections of convex sets, Pacific J. Math. 12 (1962), 197–202. MR 142054, DOI 10.2140/pjm.1962.12.197
- Hugo Hadwiger and Hans Debrunner, Combinatorial geometry in the plane, Holt, Rinehart and Winston, New York, 1964. Translated by Victor Klee. With a new chapter and other additional material supplied by the translator. MR 0164279 E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jber. Deutsch. Math.-Verein. 32 (1923), 175-176.
- P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Mathematical Society Lecture Note Series, vol. 3, Cambridge University Press, London-New York, 1971. Prepared in collaboration with J. E. Reeve and A. A. Ball. MR 0301635
- Johann Radon, Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten, Math. Ann. 83 (1921), no. 1-2, 113–115 (German). MR 1512002, DOI 10.1007/BF01464231 E. Steinitz, Bedingt konvergente Reihen und konvexe Systemes. I-II-III, J. Reine Angew. Math. 143 (1913), 128-175, 144 (1914), 1-40, 146 (1916), 1-52.
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 187–204. MR 0030135
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 109-114
- MSC: Primary 52A35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663877-X
- MathSciNet review: 663877