Uniformly contractive fixed points in compact metric spaces
HTML articles powered by AMS MathViewer
- by Solomon Leader
- Proc. Amer. Math. Soc. 86 (1982), 153-158
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663887-2
- PDF | Request permission
Abstract:
Let $f$ be a continuous self-map on a compact metric space. Equivalent conditions are given for the existence of a uniformly contractive fixed point $w({f^n}x \to w$ uniformly for all $x$). Corollaries give sufficient conditions for uniformly contractive fixed points subsuming some known results.References
- Josef Daneš, Two fixed point theorems in topological and metric spaces, Bull. Austral. Math. Soc. 14 (1976), no. 2, 259–265. MR 418066, DOI 10.1017/S0004972700025077
- M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79. MR 133102, DOI 10.1112/jlms/s1-37.1.74
- B. Fisher, A fixed-point theorem for compact metric spaces, Publ. Math. Debrecen 25 (1978), no. 3-4, 193–194. MR 516999, DOI 10.5486/pmd.1978.25.3-4.01
- M. Hegedűs, New generalizations of Banach’s contraction principle, Acta Sci. Math. (Szeged) 42 (1980), no. 1-2, 87–89. MR 576939
- Ludvik Janos, Hwei Mei Ko, and Kok Keong Tan, Edelstein’s contractivity and attractors, Proc. Amer. Math. Soc. 76 (1979), no. 2, 339–344. MR 537101, DOI 10.1090/S0002-9939-1979-0537101-2
- Gerald Jungck, Commuting mappings and fixed points, Amer. Math. Monthly 83 (1976), no. 4, 261–263. MR 400196, DOI 10.2307/2318216
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- M. S. Khan and S. P. Singh, Some fixed point theorems for densifying mappings, Kyungpook Math. J. 20 (1980), no. 1, 105–110. MR 584339
- Solomon Leader and Stephen L. Hoyle, Contractive fixed points, Fund. Math. 87 (1975), 93–108. MR 405397, DOI 10.4064/fm-87-2-93-108
- Philip R. Meyers, A converse to Banach’s contraction theorem, J. Res. Nat. Bur. Standards Sect. B 71B (1967), 73–76. MR 221469
- Pedro Morales, Topological contraction principle, Fund. Math. 110 (1980), no. 2, 135–144. MR 600587, DOI 10.4064/fm-110-2-135-144
- Roger D. Nussbaum, Some asymptotic fixed point theorems, Trans. Amer. Math. Soc. 171 (1972), 349–375. MR 310719, DOI 10.1090/S0002-9947-1972-0310719-6
- J. L. Solomon and Ludvik Janos, Even continuity and the Banach contraction principle, Proc. Amer. Math. Soc. 69 (1978), no. 1, 166–168. MR 500891, DOI 10.1090/S0002-9939-1978-0500891-8
- Wolfgang Walter, Remarks on a paper by F. Browder about contraction: “Remarks on fixed point theorems of contractive type” [Nonlinear Anal. 3 (1979), no. 5, 657–661; MR 81a:54046], Nonlinear Anal. 5 (1981), no. 1, 21–25. MR 597277, DOI 10.1016/0362-546X(81)90066-3
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 153-158
- MSC: Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663887-2
- MathSciNet review: 663887