Integral polynomial generators for the homology of $B\textrm {SU}$
HTML articles powered by AMS MathViewer
- by Stanley O. Kochman
- Proc. Amer. Math. Soc. 86 (1982), 179-183
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663892-6
- PDF | Request permission
Abstract:
Explicit formulas are given for polynomial generators of ${H_ * }BSU$ as specific polynomials in the canonical polynomial generators of ${H_ * }BU$. The method is also applied to ${H_ * }(BSU;R)$ for any coefficient ring $R$ and to ${H_ * }(BSO;{Z_2})$.References
- Stanley O. Kochman, Primitive generators for algebras, Canadian J. Math. 34 (1982), no. 2, 454–463. MR 658978, DOI 10.4153/CJM-1982-030-4
- Stanley O. Kochman, Polynomial generators for $H_\ast (B\textrm {SU})$ and $H_\ast (B\textrm {SO};\ Z_{2})$, Proc. Amer. Math. Soc. 84 (1982), no. 1, 149–154. MR 633297, DOI 10.1090/S0002-9939-1982-0633297-2 S. Papastavridis, The image of ${H_ * }(BSO;{Z_2})$ in ${H_ * }(BO;{Z_2})$, preprint.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 179-183
- MSC: Primary 55R45; Secondary 57T05
- DOI: https://doi.org/10.1090/S0002-9939-1982-0663892-6
- MathSciNet review: 663892