SHORTER NOTES

The purpose of this department is to publish very short papers of unusually elegant and polished character, for which there is no other outlet.

GAUSS-BONNET THEOREMS FOR NONCOMPACT SURFACES

STEVEN ROSENBERG

The aim of this note is to give short proofs of the following two theorems, due to Cohn-Vossen [3] and Huber [4] respectively.

THEOREM A (GAUSS-BONNET INEQUALITY). Let M be a finitely connected complete noncompact Riemannian surface with Gaussian curvature K and area element dA. If $\int_M K \, dA$ is absolutely integrable, then $\chi(M) \ge \int_M K \, dA$.

THEOREM B. Let M be a finitely connected complete, finite volume noncompact Riemannian surface with $\int_M K \, dA$ absolutely integrable. Then

$$\chi(M) = \int_M K \, dA.$$

For The rem A, see also [1].

Such an M is homeomorphic to a compact surface with p points deleted. A neighborhood of each point is homeomorphic to $S^1 \times \mathbb{R}^+$, and by forming the gradient flow associated to a Morse function on M [5], the metric on the cusp $S^1 \times \mathbb{R}^+$ can be chosen to be of the form $g_{11}(\theta, t)d\theta^2 + g_{22}(\theta, t)dt^2$. Reparametrizing \mathbb{R}^+ by arclength puts the metric in the form $g_{11}(\theta, t)d\theta^2 + dt^2$. Since M is complete, the new parameterization ranges over all of \mathbb{R}^+ .

Let $M_h = M - \bigcup_{1}^{p} \{S^1 \times (h, \infty)\}$, so M_h is just M truncated at height h up each cusp. Then the Gauss-Bonnet Theorem for surfaces with boundary gives $\chi(M_h) = \int_{M} K \, dA + \int_{\partial M_h} \omega_{12}$, where ω_{12} is the connection one-form associated to an orthonormal frame on M [2]. Since $\chi(M) = \chi(M_h)$, we must show $\lim_{h \to \infty} \int_{\partial M_h} \omega_{12} \ge 0$ for Theorem A and $\lim_{h \to \infty} \int_{\partial M_h} \omega_{12} = 0$ for Theorem B.

Received by the editors January 14, 1982. 1980 Mathematics Subject Classification. Primary 53C45.

Picking the orthonormal frame $\theta^1 = \sqrt{g_{11}} d\theta$ and $\theta^2 = dt$ gives $\omega_{12} = (d/dt)(\sqrt{g_{11}})d\theta$ via the first structure equation $d\theta^1 = \omega_{12} \wedge \theta^2$. The second structure equation gives $KdA = \Omega_{12} = d\omega_{12} = (d^2/dt^2)(\sqrt{g_{11}})d\theta dt$. Since $\int_M K dA < \infty$, $\lim_{h\to\infty} \int_{\partial M_h} (d^2/dt)\sqrt{g_{11}} d\theta = 0$ or $\lim_{h\to\infty} \int_{\partial M_h} (d/dt)\sqrt{g_{11}} d\theta$ is a constant C.

For Theorem B, $\iint_{M\sqrt{g_{11}}} d\theta dt < \infty$ implies $\lim_{h\to\infty} \int_{\partial M_h} \sqrt{g_{11}} d\theta = 0$. Now $\lim_{h\to\infty} \int_{\partial M_h} \omega_{12} = \lim_{h\to\infty} (d/dt) \int_{\sqrt{g_{11}}} d\theta = C$ forces C = 0.

For Theorem A, we need to show $C \ge 0$. Since $\int_{\partial M_h} \sqrt{g_{11}} \ d\theta \sim C \cdot h + D$ as $h \to \infty$, if C < 0 we get $\int_{\partial M_h} \sqrt{g_{11}} \ d\theta < 0$ for each $h \gg 0$. Since the integrand is positive, this is impossible.

REFERENCES

- 1. D. Bleecker, The Gauss-Bonnet inequality and almost geodesic loops, Adv. in Math. 14 (1974), 183-194.
 - 2. S.-S. Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math. 46 (1945), 674-684.
 - 3. S. Cohn-Vossen, Kürzeste Wege und totalkrümmung auf Flächen, Compositio Math. 2 (1935), 69-133.
- 4. Alfred Huber, On subharmonic functions and differential geometry in the large, Comment. Math. Helv. 32 (1957), 13-72.
- 5. J. Milnor, Morse theory, Ann. of Math. Studies, no. 51, Princeton Univ. Press, Princeton, N. J., 1963, p. 12.

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY, WALTHAM, MASSACHUSETTS 02154