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SHORTER NOTES

The purpose of this department is to publish very short papers of unusually

elegant and polished character, for which there is no other outlet.

GAUSS-BONNET THEOREMS

FOR NONCOMPACT SURFACES

STEVEN ROSENBERG

The aim of this note is to give short proofs of the following two theorems, due to

Cohn-Vossen [3] and Huber [4] respectively.

Theorem A (Gauss-Bonnet Inequality). Let M be a finitely connected complete

noncompact Riemannian surface with Gaussian curvature K and area element dA. If

jMKdA is absolutely integrable, then x(^) ** fMK dA.

Theorem B. Let M be a finitely connected complete, finite volume noncompact

Riemannian surface with jMK dA absolutely integrable. Then

X(M) = [ KdA.

For Thee rem A, see also [1].

Such an M is homeomorphic to a compact surface with p points deleted. A

neighborhood of each point is homeomorphic to S1 X R+ , and by forming the

gradient flow associated to a Morse function on M [5], the metric on the cusp

S1 X R+ can be chosen to be of the form gxx(0, t)d02 + g22(6, t)dt2. Reparametriz-

ing R+ by arclength puts the metric in the form gxx(0, t)d02 + dt2. Since M is

complete, the new parameterization ranges over all of R+ .

Let Mh = M — Uf{5' X (h, oo)}, so Mh is just M truncated at height h up each

cusp. Then the Gauss-Bonnet Theorem for surfaces with boundary gives x(Mh) —

fMKdA + fdM w12, where w12 is the connection one-form associated to an ortho-

normal frame on M [2]. Since x(^0 = X(Mh), we must show limh^0OfäM uX2 2* 0

for Theorem A and limh^xfdM <o,2 = 0 for Theorem B.
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Picking the orthonormal frame 01 = v/g]7 dO and 62 = dt gives u12 =

(d/dt)(Jgx~x~)dO via the first structure equation dOx — ux2 A 62. The second structure

equation   gives   KdA = ß12 = dux2 = (d2/dt2)(^gx~l~)d6 dt.   Since   fMK dA < oo,

lim^oo W¿7¿0/g!7 ^ = 0 or lim^^/^/i/ydOv/gn" ¿* « a constant C.

For Theorem B, ffMyfgx~x~dddt<<x> implies bmh_txf^Mi;fgx~{ dd — 0. Now

lim/^oo/3A/„ wi2 = um^nid/dOfjgïï d0 = C forces C = 0.

For Theorem A, we need to show C > 0. Since fzMhJgx~x~ dd ~ C ■ h + D as

h -» oo, if C < 0 we get JSMh^gx~î dd < 0 for each A » 0. Since the integrand is

positive, this is impossible.
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