ON IDEAL CLASS GROUPS OF 2-POWER EXPONENT

A. G. EARNEST AND O. H. KÖRNER

Abstract. It is shown that for a fixed totally real algebraic number field \(k \) and a fixed positive integer \(t \), there exist only finitely many totally imaginary quadratic extensions \(K \) of \(k \) having ideal class groups of exponent \(2^t \).

Under the assumption of the extended Riemann Hypothesis it has been shown by Boyd and Kisilevsky [1], and independently by Weinberger [6], that the exponent of the ideal class group of an imaginary quadratic field \(\mathbb{Q}(\sqrt{d}) \), \(d \) a fundamental discriminant, tends to infinity as \(|d| \) tends to infinity. It follows that for any positive integer \(e \) there exist only finitely many such fields having ideal class group of exponent \(e \). The particular cases \(e = 2, 3 \) and \(4 \) of this result have been established without the Riemann Hypothesis assumption in [2, 1 and 3], respectively.

The purpose of this note is to prove an unconditional result of this nature for an infinite family of exponents in the more general context of totally imaginary quadratic extensions of an arbitrary totally real algebraic number field.

Theorem 1. For a fixed totally real algebraic number field \(k \) and a fixed positive integer \(t \), there exist only finitely many totally imaginary quadratic extensions \(K \) of \(k \) having ideal class groups of exponent \(2^t \).

To facilitate the discussion here, we first fix some notations. For an algebraic number field \(F \) denote by \(R_F \) the ring of algebraic integers of \(F \), by \(I_F \) the group of fractional \(R_F \)-ideals of \(F \), and by \(P_F \) the subgroup of \(I_F \) consisting of principal ideals. \(C_F \) will denote the ideal class group \(I_F/P_F \) of \(F \), whose order will be denoted by \(h_F \), and \(U_F \) will denote the group of units of \(R_F \). For an ideal \(J \) in \(I_F \), \(N(J) \) will denote the absolute norm.

Throughout the paper the fields \(K \) and \(k \) will be as in Theorem 1. The nontrivial \(k \)-automorphism of \(K \) will be denoted by \(\ast \), and the relative discriminant of \(K \) over \(k \) by \(d_{K/k} \). For a fixed positive integer \(t \), let

\[
G_t = \{ x \in C_K : x^{2^t} = 1 \}.
\]

We will prove the following result, from which Theorem 1 follows immediately:

Theorem 2. Let \(k \) be a fixed totally real algebraic number field and \(t \) a fixed positive integer. For totally imaginary quadratic extensions \(K \) of \(k \),

\[
|C_K/G_t| \to \infty \quad \text{as} \quad N(d_{K/k}) \to \infty.
\]
ON IDEAL CLASS GROUPS OF 2-POWER EXPONENT 197

Proof. Observe first that \(C_K/G_s \cong C_K^{2^t} \), and

\[
|C_K^{2^t}| = |C_K| \left[\prod_{j=0}^{t-1} \left| \frac{C_K^{2^j}}{C_K^{2^{j+1}}} \right| \right]^{-1}.
\]

To estimate the factors in the above product it is convenient to introduce the groups

\[
H_j = \{ B^2E^{2^{j-1}}p_k \in C_K : B \in I_K and E \in I_k \}.
\]

Consider the mappings \(\phi_j : I_K \rightarrow C_K^{2^j}/H_{j+1} \) given by \(X \mapsto X^2p_kH_{j+1} \). If \(X = aY/Y^* \) for \(a \in \hat{K}, Y \in I_K \), then

\[
X^{2^j} = a^{2^j}Y^{2^j}/(Y^*)^{2^j} = a^{2^j}Y^{2^j+1}/(nY)^{2^j},
\]

where \(nY \) is the relative norm of the ideal \(Y \) in the extension \(K/k \). Thus, \(S \) is contained in the kernel of \(\phi_j \), where

\[
S = \{ aY/Y^* : a \in \hat{K}, Y \in I_K \}.
\]

So, for each \(j \), we have

\[
|C_K^{2^j}/H_{j+1}| = |I_K/\ker(\phi_j)| \leq [I_K : S].
\]

The latter index is known from the theory of quadratic extensions of algebraic number fields (see [4, §13, Satz 13]);

\[
[I_K : S] = h_k \left[N_{K/k}(K) \cap U_k : U_k^2 \right] 2^{r-1},
\]

where \(r \) is the number of (finite) primes of \(k \) which are ramified in \(K \). For each \(j \),

\[
|C_K^{2^j}/C_K^{2^{j+1}}| = |C_K^{2^j}/H_{j+1}| \left| \frac{H_{j+1}}{C_K^{2^{j+1}}} \right | \\
\leq h_k \left[U_k : U_k^2 \right] 2^{r-1} \cdot h_k = c_1 2^{r-1}
\]

for a constant \(c_1 \) depending only upon \(k \). It now follows that

\[
|C_K^{2^j}| \geq c_2 h_k/(2^t)^{r-1}
\]

for a constant \(c_2 \) depending upon \(k \) and \(t \). Applying a result of Stark [5, Theorem 2] when \(k \neq \mathbb{Q} \) and the Brauer-Siegel Theorem when \(k = \mathbb{Q} \), \(h_K \) can be bounded from below by

\[
h_K \geq c_3 N(d_{K/k})^{1/4}
\]

with \(c_3 \) a constant depending only upon \(k \). Combining the last two inequalities, we obtain

\[
|C_K^{2^j}| \geq c_4 N(d_{K/k})^{1/4}(2^t)^{1-r},
\]

where \(c_4 \) is a constant depending upon \(k \) and \(t \).

Now let \(m \) be the number of (not necessarily distinct) prime factors of \(N(d_{K/k}) \), and let \(n = [k : \mathbb{Q}] \). Then

\[
N(d_{K/k})^{1/4}(2^t)^{1-r} \geq \left(\prod p^{1/4} \right)(2^t)^{-mn} = \prod \left(p^{1/4} 2^{-m} \right),
\]
where the products are taken over the (not necessarily distinct) primes p dividing $N(d_{K/k})$. As $N(d_{K/k})$ tends to infinity, the size of the largest prime divisor of $N(d_{K/k})$ tends to infinity. Hence, the above product tends to infinity and the proof is complete.

REFERENCES

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

ABTEILUNG FÜR MATHEMATIK IV, UNIVERSITÄT ULM, OBERER ESELSBERG, 79 ULM, BR DEUTSCHLAND