SPLITTING S^4 ON RP^2 VIA THE BRANCHED COVER
OF CP^2 OVER S^4

TERRY LAWSON

Abstract. The four sphere decomposes as a twisted double $N_2 \cup N_2$, where N_2 is
the 2-disk bundle over the real projective plane with Euler number 2. In this note the
relationship of this splitting to the double branched cover of the complex projective
plane over the four sphere as the quotient space under complex conjugation is made
explicit.

It is known that the quotient of CP^2 under complex conjugation is S^4 (cf. [1, 2,
4]). While trying to understand this the author was led to the splitting $S^4 = N_2 \cup N_2$,
where N_2 is a tubular neighborhood of a standard RP^2 in S^4 [3] (see [5, 6] for other
approaches to this splitting). N_2 can be characterized as being the nonorientable disk
bundle over RP^2 with Euler number 2. In this note, we would like to make explicit
the relationship of the splitting of S^4 to the branched cover of CP^2 over S^4. This
proof also exhibits an interesting decomposition of CP^2.

Let T_k denote the 2-disk bundle over S^2 with Euler number k; T_2 is just the
tangent bundle of S^2. Let N_k be the nonorientable 2-disk bundle over RP^2 with
Euler number k; N_1 is the tangent bundle of RP^2. Here the descriptions of T_4, N_1,
N_2 based on the usual description of $T_2 = \{(x, y) \in S^2 \times D^3 : x \cdot y = 0\}$. Then
$T_4 = T_2/(x, y) \sim (x, -y)$, $N_1 = T_2/(x, y) \sim (-x, y)$, and $N_2 = T_2/(x, y) \sim
(\pm x, \pm y)$. Note that the quotient maps lead to a commutative diagram:

$$
\begin{array}{ccc}
T_2 & \leftarrow & T_4 \\
\downarrow & & \downarrow \\
N_1 & \leftarrow & N_2
\end{array}
$$

Our starting point is Massey’s approach to $CP^2/\sim \approx S^4$ [4]. Massey regards
$CP^2 = S^2 \times S^2/(x, y) \sim (y, x)$, with complex conjugation being equivalent to
$[(x, y)] \to [(-x, -y)]$. He then shows that $S^2 \times S^2/H \approx S^4$, where $H = \{I, (x, y) \to
(y, x), (x, y) \to (-x, -y), (x, y) \to (-y, -x)\}$. For completeness, we will give the
details of $S^2 \times S^2/(x, y) \sim (y, x) \approx CP^2$ since they are not given in [4]. One
regards S^2 as $C \cup \{\infty\}$ via stereographic projection. Then for a pair of complex

Received by the editors November 2, 1981.
1980 Mathematics Subject Classification. Primary 57M12; Secondary 57R22.
Key words and phrases. Twisted double, projective plane, involution, branched cover.

©1982 American Mathematical Society
0002-9939/82/0000-0240/$01.50

328
numbers z_1, z_2, one thinks of z_1, z_2 as the roots of the polynomial $(z - z_1)(z - z_2) = z_1z_2 - (z_1 + z_2)z + z^2$ and sends (z_1, z_2) to the coefficients of this polynomial, regarded as an element of \mathbb{CP}^2, $(z_1, z_2) \rightarrow [z_1z_2, -(z_1 + z_2), 1]$. The pair (z_1, ∞) is sent to the coefficients of $z - z_1$ (i.e. to $[-z_1, 1, 0]$) and (∞, ∞) goes to the coefficients of 1 (i.e. to $[1, 0, 0]$). One checks that this gives a diffeomorphism $\mathbb{S}^2 \times \mathbb{S}^2 / (x, y) \sim (y, x) \rightarrow \mathbb{CP}^2$. One then computes that the involution $(x, y) \rightarrow (-x, -y)$ of $\mathbb{S}^2 \times \mathbb{S}^2$ induces the involution $t[z_1, z_2, z_3] = [z_3, -z_2, z_1]$ of \mathbb{CP}^2. This is equivalent to complex conjugation $t[z_1, z_2, z_3] = [\bar{z}_1, \bar{z}_2, \bar{z}_3]$. An equivalence is given by $h : \mathbb{CP}^2 \rightarrow \mathbb{CP}^2$, $h[z_1, z_2, z_3] = (1/\sqrt{2}(iz_1 + z_3), iz_2, 1/\sqrt{2}(z_1 + iz_3))$, $t^2 = -i$; one computes that $hth^{-1} = t'$. Using this equivalence, we will regard \mathbb{CP}^2 as $\mathbb{S}^2 \times \mathbb{S}^2 / (x, y) \sim (y, x)$ from now on and conjugation as being given by $[(x, y)] \rightarrow [(-x, -y)]$.

We first decompose $\mathbb{S}^2 \times \mathbb{S}^2$ as $A \cup B$, where $A = \{(x, y) : x \cdot y \geq 0\}$ and $B = \{(x, y) : x \cdot y \leq 0\}$. If $\alpha(x, y) = (x, -y)$, then α is a diffeomorphism of $\mathbb{S}^2 \times \mathbb{S}^2$ interchanging A and B. Note that A is diffeomorphic to T^2, being a tubular neighborhood of the diagonal. An explicit diffeomorphism is given by $g : T^2 \rightarrow A$, $g(x, y) = (\exp_x(y/2), \exp_x(-y/2))$, where \exp_x goes along the great circle from x in direction v a distance $(\pi/2)|v|$. This leads to a decomposition $\mathbb{S}^2 \times \mathbb{S}^2 = A \cup B \approx T^2 \cup_\alpha T^2$, where $\alpha' = g^{-1}\alpha g, \alpha'(x, y) = (y, x)$. Here T^2 is mapped to A via g on the left and is mapped to B via ag on the right. Our convention is that glueing maps go from right to left.

Now $\beta(x, y) = (y, x)$ on $\mathbb{S}^2 \times \mathbb{S}^2$ becomes $\beta' = g^{-1}\beta g, \beta'(x, y) = (x, -y)$ on the left copy of T^2, and $\beta'' = g^{-1}\alpha^{-1}\beta \alpha g, \beta''(x, y) = (-x, y)$ on the right copy of T^2. Thus $\mathbb{S}^2 \times \mathbb{S}^2 / \beta = \mathbb{CP}^2$ decomposes as $T^2 / \beta' \cup_\beta T^2 / \beta''$, where $\alpha((x, y)) = [(y, x)]$. But $T^2 / \beta' = T^4$ and $T^2 / \beta'' = N_1$. Thus \mathbb{CP}^2 decomposes as $T^4 \cup_\beta N_1$.

We have seen that complex conjugation on \mathbb{CP}^2 is equivalent to the involution induced by $\gamma(x, y) = (-x, -y)$ on $\mathbb{S}^2 \times \mathbb{S}^2$, which corresponds to γ', γ'' on the two factors of T^2, $\gamma'(x, y) = (-x, -y) = \gamma''(x, y)$. Thus its quotient, which is S^4, splits as $T^2 / \beta', \gamma' \cup T^2 / \beta'', \gamma'' = N_2 \cup_f N_2$, with $f([(x, y)]) = [(y, x)]$.

The following diagram summarizes these splittings:

$$
\begin{array}{ccc}
S^2 \times S^2 & \approx & T^2 \cup_\alpha T^2 \\
\downarrow / \beta & & \\
\mathbb{CP}^2 & \approx & T^4 \cup_\beta N_1 \\
\downarrow / \gamma & & \\
S^4 & \approx & N_2 \cup_f N_2
\end{array}
$$

REMARKS. (1) Note that $[1, 2, 4]$ show $\mathbb{CP}^2 \sim S^4$ while $[3, 5, 6]$ show $N \cup_f N \sim S^4$. Another simple proof that $\mathbb{CP}^2 \sim S^4$ can be based on examining the standard handle decomposition $\mathbb{CP}^2 \approx h^0 \cup h^2 \cup h^4$. Under complex conjugation, the quotient gives the union of 3 disks. The first two are glued together along a common
boundary disk to give D^4 and the last one is glued along the full boundary S^3 to this to give S^4.

(2) In the decomposition $\mathbb{C}P^2 \cong T_4 \cup_s N_1$, the $\mathbb{R}P^2 \subseteq N_1$ is just the standard $\mathbb{R}P^2 \subseteq \mathbb{C}P^2$. One can check, using the equivalence h above, that $S^2 \subseteq T_4$ is given by the solution of $2z_1^2 + z_2^2 + 2z_3^2 = 0$. This represents $2[\mathbb{C}P^1]$ homologically.

REFERENCES