## The geometry of weak Radon-Nikodým sets in dual Banach spaces

HTML articles powered by AMS MathViewer

- by Lawrence H. Riddle PDF
- Proc. Amer. Math. Soc.
**86**(1982), 433-438 Request permission

## Abstract:

Geometric characterizations in terms of trees, extreme points and dentability are presented for weak*-compact absolutely convex sets that have the Radon-Nikodym property for the Pettis integral.## References

- Mahlon M. Day,
*Normed linear spaces*, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR**0344849** - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964**, DOI 10.1090/surv/015 - Nassif Ghoussoub and Elias Saab,
*On the weak Radon-Nikodým property*, Proc. Amer. Math. Soc.**81**(1981), no. 1, 81–84. MR**589141**, DOI 10.1090/S0002-9939-1981-0589141-4 - Richard Haydon,
*Some more characterizations of Banach spaces containing $l_{1}$*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no. 2, 269–276. MR**423047**, DOI 10.1017/S0305004100052890 - Liliana Janicka,
*Some measure-theoretical characterization of Banach spaces not containing $l_{1}$*, Bull. Acad. Polon. Sci. Sér. Sci. Math.**27**(1979), no. 7-8, 561–565 (1980) (English, with Russian summary). MR**581552** - Philip W. McCartney,
*Neighborly bushes and the Radon-Nikodým property for Banach spaces*, Pacific J. Math.**87**(1980), no. 1, 157–168. MR**590873**, DOI 10.2140/pjm.1980.87.157 - I. Namioka and R. R. Phelps,
*Banach spaces which are Asplund spaces*, Duke Math. J.**42**(1975), no. 4, 735–750. MR**390721**, DOI 10.1215/S0012-7094-75-04261-1 - Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr.,
*Sets with the weak Radon-Nikodým property in dual Banach spaces*, Indiana Univ. Math. J.**32**(1983), no. 4, 527–541. MR**703283**, DOI 10.1512/iumj.1983.32.32038
L. H. Riddle and J. J. Uhl, Jr., - Haskell P. Rosenthal,
*A characterization of Banach spaces containing $l^{1}$*, Proc. Nat. Acad. Sci. U.S.A.**71**(1974), 2411–2413. MR**358307**, DOI 10.1073/pnas.71.6.2411
E. Saab and P. Saab,

*The fine line between Asplund spaces and spaces not containing a copy of*${l_1}$, preprint.

*On Banach spaces not containing*${l_1}$, Pacific J. Math, (to appear).

## Additional Information

- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**86**(1982), 433-438 - MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0671210-2
- MathSciNet review: 671210