The geometry of weak Radon-Nikodým sets in dual Banach spaces
HTML articles powered by AMS MathViewer
- by Lawrence H. Riddle
- Proc. Amer. Math. Soc. 86 (1982), 433-438
- DOI: https://doi.org/10.1090/S0002-9939-1982-0671210-2
- PDF | Request permission
Abstract:
Geometric characterizations in terms of trees, extreme points and dentability are presented for weak*-compact absolutely convex sets that have the Radon-Nikodym property for the Pettis integral.References
- Mahlon M. Day, Normed linear spaces, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21, Springer-Verlag, New York-Heidelberg, 1973. MR 0344849
- J. Diestel and J. J. Uhl Jr., Vector measures, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR 0453964, DOI 10.1090/surv/015
- Nassif Ghoussoub and Elias Saab, On the weak Radon-Nikodým property, Proc. Amer. Math. Soc. 81 (1981), no. 1, 81–84. MR 589141, DOI 10.1090/S0002-9939-1981-0589141-4
- Richard Haydon, Some more characterizations of Banach spaces containing $l_{1}$, Math. Proc. Cambridge Philos. Soc. 80 (1976), no. 2, 269–276. MR 423047, DOI 10.1017/S0305004100052890
- Liliana Janicka, Some measure-theoretical characterization of Banach spaces not containing $l_{1}$, Bull. Acad. Polon. Sci. Sér. Sci. Math. 27 (1979), no. 7-8, 561–565 (1980) (English, with Russian summary). MR 581552
- Philip W. McCartney, Neighborly bushes and the Radon-Nikodým property for Banach spaces, Pacific J. Math. 87 (1980), no. 1, 157–168. MR 590873, DOI 10.2140/pjm.1980.87.157
- I. Namioka and R. R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1975), no. 4, 735–750. MR 390721, DOI 10.1215/S0012-7094-75-04261-1
- Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr., Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 527–541. MR 703283, DOI 10.1512/iumj.1983.32.32038 L. H. Riddle and J. J. Uhl, Jr., The fine line between Asplund spaces and spaces not containing a copy of ${l_1}$, preprint.
- Haskell P. Rosenthal, A characterization of Banach spaces containing $l^{1}$, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411–2413. MR 358307, DOI 10.1073/pnas.71.6.2411 E. Saab and P. Saab, On Banach spaces not containing ${l_1}$, Pacific J. Math, (to appear).
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 433-438
- MSC: Primary 46B20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0671210-2
- MathSciNet review: 671210