ON THE SOBCZYK-HAMMER DECOMPOSITION
OF ADDITIVE SET FUNCTIONS

WILFRIED SIEBE

Abstract. It is observed that continuity for charges is equivalent to the absence of two-valued minorants. This characterization forms the basis of a new short proof within a functional-analytic context of a decomposition theorem by A. Sobczyk and P. C. Hammer [5] for charges on a field \mathcal{A} into a continuous part and a part which can be written as a sum of at most two-valued charges on \mathcal{A}. A counterexample shows that in general the decomposition of a charge into a nonatomic part and a part which has no nonnull nonatomic minorant is not unique.

1. Definitions. Let \mathcal{A} be a field of subsets of a set Ω. A charge μ on \mathcal{A} is a real-valued nonnegative finitely additive function defined on \mathcal{A}. A measure is a countably additive charge whose domain is a σ-field of subsets of a set. A set $A \in \mathcal{A}$ will be called an atom for μ iff $\mu(A) > 0$ and for every set $E \in \mathcal{A}$, $E \subset A$, either $\mu(E) = 0$ or $\mu(E) = \mu(A)$. μ is nonatomic iff there are no atoms for μ. Finally, a charge μ on a field \mathcal{A} (in Ω) is said to be continuous iff, given $\varepsilon > 0$, there exists a partition $P = \{B_1, \ldots, B_n\}$ of Ω into a finite number of pairwise disjoint members of \mathcal{A} such that $\mu(B_i) < \varepsilon$ for every i. Let \mathcal{P} denote the family of all such partitions, and $|P(\mu)|$ the maximum of $\mu(B_i)$ over all parts B_i of $P \in \mathcal{P}$.

2. Main result. It is well known that a measure λ on a σ-field \mathcal{G} can be decomposed uniquely into $\lambda = \lambda_0 + \lambda'$ where λ' is a nonatomic measure on \mathcal{G} and λ_0 a completely atomic measure on \mathcal{G}, i.e., λ_0 has the form $\lambda_0 = \sum_{i=1}^{\infty} \lambda_i$ with at most two-valued measures λ_i on \mathcal{G} ($i \in \mathbb{N}$).

A. Sobczyk and P. C. Hammer have proved an analogous decomposition theorem for charges on fields of subsets of a set:

Decomposition Theorem (Sobczyk-Hammer [5, Theorem 4.1]). Let μ be a charge on a field \mathcal{A} (in a set Ω). Then μ can be decomposed uniquely into $\mu = \mu_0 + \mu'$ with a continuous charge μ' on \mathcal{A} and a charge μ_0 on \mathcal{A} which has the form $\mu_0 = \sum_{i=1}^{\infty} \mu_i$ with at most two-valued charges μ_i on \mathcal{A} ($i \in \mathbb{N}$).

The following lemma yields a reformulation of this theorem, for which a short functional-analytic proof will be given. The Krein-Milman representation theorem will serve as a link to the classical Lebesgue decomposition theorem.

Received by the editors April 15, 1981.

1980 Mathematics Subject Classification. Primary 28A10; Secondary 28A45.

Key words and phrases. Continuous resp. nonatomic charges, Krein-Milman representation theorem, decomposition theorem.
Lemma. Let \(v \) be a charge on a field \(\mathfrak{A} \). \(v \) is continuous iff \(v \) admits no two-valued minorant, i.e., \(v \) has the property (*) \(v \geq \eta \) implies \(\eta = 0 \) for any at most two-valued charge \(\eta \) on \(\mathfrak{A} \).

Proof. A canonical indirect argument shows that a continuous charge on \(\mathfrak{A} \) also has the property (*). Now suppose that \(v \) is not continuous. Then by Lemmas 4.1 and 4.2 of [5] there exists a two-valued charge \(v^* \) on \(\mathfrak{A} \) with \(v \geq v^* \)

Theorem. Let \(\mu \) be a charge on a field \(\mathfrak{A} \) of subsets of a set \(\Omega \). Then \(\mu \) is
decomposable uniquely into \(\mu = \mu_0 + \mu' \) where \(\mu' \) is a charge on \(\mathfrak{A} \) with property (*) and \(\mu_0 \) is a charge on \(\mathfrak{A} \) of the form \(\mu_0 = \sum_{i=1}^{\infty} \mu_i \) with at most two-valued charges \(\mu_i \) on \(\mathfrak{A} \) (\(i \in \mathbb{N} \)).

Proof. Existence. Let \(\mu \) be a probability charge on \(\mathfrak{A} \). Let \(X \) denote the set of all probability charges on \(\mathfrak{A} \) and \(X_\epsilon \) the set of extreme points of \(X \). Then by the theorem of Krein-Milman [3, p. 6] there exists a regular probability measure \(\rho \) on the Borel sets of \(X \) with \(\rho(X_\epsilon) = 1 \) and the property \(\mu(A) = \int_{X_\epsilon} \nu(A) \rho(d\nu) \) for every \(A \in \mathfrak{A} \).

Notice that \(X \) is a convex and by the theorem of Tychonoff compact subset of the locally convex space \(E = \text{ba}(\Omega, \mathfrak{A}) \) of all bounded additive set functions on \(\mathfrak{A} \) under the weak* topology and that the (by [2, V.8.2] nonempty) set \(X_\epsilon \) characterized by the set of the \(\{0,1\} \)-valued charges on \(\mathfrak{A} \) [1, p. 245] is weak* closed. The measure \(\rho \) has a unique decomposition into a convex combination \(\rho = \alpha \rho_1 + (1 - \alpha) \rho_2 \) of a discrete probability measure \(\rho_1 \) and a probability measure \(\rho_2 \) with \(\rho_2(\{v\}) = 0 \) for all \(v \in X \), both on the Borel sets of \(X \) [2, III.4.14]. Thus \(\rho_1 \) can be represented by \(\rho_1 = \sum_{i=1}^{\infty} \alpha_j \delta_\epsilon_i \), where \(\epsilon_i \) denotes the Dirac measure on the Borel sets of \(X \) at \(v \in X_\epsilon \) and where \(\alpha_j \geq 0 \) with \(\sum_{i=1}^{\infty} \alpha_i = 1 \) (\(j \in \mathbb{N} \)). Further, the probability charge \(\nu' \) on \(\mathfrak{A} \) defined by \(\nu'(A) = \int_{X_\epsilon} \nu(A) \rho_2(d\nu) \) for every \(A \in \mathfrak{A} \) has the property (*):

Suppose, there is a two-valued charge \(\tilde{v} \) on \(\mathfrak{A} \) with \(\nu' \geq \tilde{v} \). Define \(\tilde{v} = \nu'/\tilde{\nu}(\Omega) \), \(\Delta = \{ A \in \mathfrak{A} | \tilde{v}(A) = 1 \} \) and \(U_\Delta = \{ v \in X_\epsilon | v(A) = 1 \} \) for every \(A \in \mathfrak{A} \). \(U_\Delta \) is weak* closed, and for every \(A \in \Delta \) the following chain holds:

\[
\nu'(A) = \int_{X_\epsilon} \nu(A) \rho_2(d\nu) = \int_{U_\Delta} \nu(A) \rho_2(d\nu) + \int_{X_\epsilon \setminus U_\Delta} \nu(A) \rho_2(d\nu)
\]

\[
= \rho_2(U_\Delta) \geq \tilde{v}(A) > 0
\]
and therefore $\inf_\Delta \rho_2(U_\Delta) > 0$. Because ρ_2 is a bounded regular measure on the Borel sets of a compact space, $\rho_2(\bigcap_\Delta U_\Delta) = \inf_\Delta \rho_2(U_\Delta)$. (Notice that for any $\varepsilon > 0$ there is a weak* compact subset K of $\bigcup_\Delta V_\Delta$ with $V_\Delta = X \setminus U_\Delta$, $A \in \Delta$, such that $\rho_2(K) > \rho_2(\bigcup_\Delta V_\Delta) - \varepsilon$. Thus, there exists a finite family $\{A_1, \ldots, A_n\} \subseteq \Delta$ with $K \subseteq \bigcup_{i=1}^n V_{A_i}$.

Now, define $A_0 = \bigcap_{i=1}^n A_i$. Then, $A_0 \in \Delta$ and $\bigcup_{i=1}^n V_{A_i} \subseteq V_{A_0}$ [the first because of $\bigcap_{i=1}^m U_{A_i} = U_{\bigcap_{i=1}^m B_i}$ for all $m \in \mathbb{N}$, $B_1, \ldots, B_m \in \mathcal{A}$]. Therefore $\rho_2(V_{A_0}) \geq \rho_2(K) > \rho_2(\bigcup_\Delta V_\Delta) - \varepsilon$. Hence $\rho_2(\bigcup_\Delta U_\Delta) = \sup_\Delta \rho_2(U_\Delta')$. Finally, $\bigcap_\Delta U_\Delta = \{\tilde{\mathcal{F}}\}$ holds, which implies $\rho_2(\tilde{\mathcal{F}}) > 0$ in contradiction to the property of ρ_2. Then $\mu(A) = \alpha \sum_{i=1}^\infty \alpha_i \nu_i(A) + (1 - \alpha) \nu'(A)$ for every $A \in \mathcal{A}$. Thus the existence of a Sobczyk-Hammer decomposition for μ is established.

Uniqueness. Let μ be an element of X. Then there exists a unique regular probability measure ρ on the Borel sets of X with $\rho(X_\mu) = 1$ which represents μ (in the sense of [3, p. 2]). Suppose $\tilde{\rho}$ is another measure with the same property. Then $\rho(U_A) = \tilde{\rho}(U_A)$ for every $A \in \mathcal{A}$. Consequently, ρ and $\tilde{\rho}$ coincide on arbitrary unions of sets from $\nabla = \{U_A \mid A \in \mathcal{A}\}$. (Notice that a similar argument as used in the proof for existence shows $\rho(\bigcap_\phi Z_{A_\phi}) = \inf_\phi \rho(Z_{A_\phi})$ with a subfamily ϕ of \mathcal{A} which is closed with respect to finite unions, and $Z_{A_\phi} = \{v \in X_\mu \mid \nu(A) = 0\}$, $A \in \phi$. Paying attention to $\rho(X_\mu) = \tilde{\rho}(X_\mu) = 1$, this identity implies the preceding coincidence statement.) Because X_μ is compact with respect to the relative weak* topology and ∇ is a base for this topology ρ and $\tilde{\rho}$ coincide on the Borel sets of X_μ and therefore also on the Borel sets of X.

It follows that the mapping,

$$X \to \mathcal{M}^+_1(X_\mu),$$

$$\mu \to \rho_\mu,$$

where $\mathcal{M}^+_1(X_\mu)$ is the set of all regular probability measures on the Borel sets of X which are concentrated at X_μ and where ρ_μ denotes the regular probability measure which represents μ, is an affine homeomorphism with (i) ρ_μ is discrete iff μ has the form $\mu = \sum_{i=1}^\infty \mu_i$ with at most two-valued charges μ_j ($j \in \mathbb{N}$) and (ii) ρ_μ is continuous, i.e. vanishing at every singleton, iff μ is continuous. This completes the proof for uniqueness.

Remarks.

(1) To prove the existence of a Sobczyk-Hammer decomposition for a charge μ on a field \mathcal{A} of subsets of a set Ω it also suffices to show that the system $\mathcal{S} = \{\sum_{i=1}^\infty \mu_j \mid \mu_j$ is an at most two-valued charge on \mathcal{A} for every $j \in \mathbb{N}$ with $\sum_{i=1}^\infty \mu_i \leq \mu\}$ is inductively ordered with respect to the usual partial ordering \leq on $\text{ba}(\Omega, \mathcal{A})$, because in that case Zorn's lemma implies the existence of a maximal element $\tilde{\mu}$ in \mathcal{S}. Thus μ can be decomposed into $\mu = \tilde{\mu} + \mu'$ where $\mu' = \mu - \tilde{\mu} > 0$.

The charge μ' has the property (\star).

(2) By the same technique, the following decomposition property can be derived: Let μ be a charge on a field \mathcal{A} of subsets of a set Ω. Then μ can be decomposed into $\mu = \mu_0 + \mu'$ where μ_0 is a nonatomic charge on \mathcal{A} and μ' is a charge on \mathcal{A} which has no nonnull nonatomic minorant, i.e., μ' has the property (\star) $\mu' > \tilde{\mu}_0$ implies $\tilde{\mu}_0 = 0$ for every nonatomic charge $\tilde{\mu}_0$ on \mathcal{A}.
PROOF. Consider the system \(\mathcal{S} = \{ \bar{\mu} \mid \bar{\mu} \text{ is a nonatomic charge on } \mathfrak{A} \text{ with } \bar{\mu} \subseteq \mu \} \). \(\mathcal{S} \) is inductively ordered with respect to the natural partial ordering \(\leq \) on \(ba(\Omega, \mathfrak{A}) \): Let \(\mathcal{S}_0 \) be a subset of \(\mathcal{S} \) which is linearly ordered. Then the charge \(\mu_0 \) defined by \(\mu_0(A) = \sup(\bar{\mu}(A) \mid \bar{\mu} \in \mathcal{S}_0) \) for every \(A \in \mathfrak{A} \) is nonatomic and therefore an upper bound for \(\mathcal{S}_0 \) in \(\mathcal{S} \). The nonatomicity of \(\mu_0 \) can be shown by a more canonical indirect argument.

A counterexample shows that in general the preceding decomposition of a charge is not unique:

Define \(\Omega = [0, 1] \), \(\mathcal{C} = \{]a, b] \mid]a, b] \text{ interval with }]a, b] \subseteq [\frac{1}{4}, \frac{3}{4}] \} \), let \(\mathfrak{A} \) denote the field of subsets of \(\Omega \) which is generated by \(\mathcal{C} \) and let \(\mu = \lambda \mid \mathfrak{A} \) be the restriction of the Lebesgue measure \(\lambda \) on \(\mathfrak{A} \). Then \(\mu \) is a nonatomic charge on \(\mathfrak{A} \). There are two decompositions for \(\mu \) of the above type: First, choose \(\mu_0 = \mu \), \(\mu' \) vanishing at every \(A \in \mathfrak{A} \). Secondly, choose \(\mu' \) according to \(\mu'(B) = \lambda(B \cap A) \) for every \(B \in \mathfrak{A} \) where \(A = [0, \frac{1}{4}] \cup [\frac{1}{4}, 1] \) and \(\mu_0 = \mu - \mu' \). Then the following statements hold: (i) \(\mu' \) is a charge on \(\mathfrak{A} \) with \(\mu' \ll \mu \), (ii) \(\mu' \) is two-valued and therefore has the property \((\sharp)\) because of the fact that \(A \subseteq B \text{ or } B \subseteq [\frac{1}{4}, \frac{3}{4}] \) and thus \(\mu'(B) = \frac{1}{2} \) or \(\mu'(B) = 0 \) for every \(B \in \mathfrak{A} \), and (iii) \(\mu_0 \) is nonatomic.

I wish to thank Professor Dr. D. Plachky for valuable remarks.

REFERENCES

Institut für Mathematische Statistik der Universität Münster, Einsteinstr. 62, D-4400 Münster, Federal Republic of Germany