ON A GAP TAUBERIAN THEOREM
OF LORENTZ AND ZELLER

T. A. KEAGY

ABSTRACT. G. G. Lorentz and K. L. Zeller have stated an O-Tauberian theorem which places a restriction on the rate of absolute convergence of the row sums of a regular summability method. In this note, we prove a theorem that has as a corollary an extension of the above result in which this restriction is deleted.

By a regular summability method $A = (a_{pq})$ we mean one that sums every convergent sequence x to $\lim_n x_n$. Such methods are characterized by the familiar Silverman-Toeplitz conditions

\begin{align*}
(1) \quad &\lim_{p} a_{pq} = 0 \quad \text{for } q = 1, 2, 3, \ldots, \\
&\lim_{p} \sum_{q} a_{pq} = 1, \quad \text{and} \\
&\sup_{p} \sum_{q} |a_{pq}| \quad \text{is finite.}
\end{align*}

We will consider arbitrary series with terms u_n and partial sums s_n. Let $1 = q(0) < q(1) < q(2) < \cdots$ be positive integers and let $0 < G_n$ with $\lim_n G_n = +\infty$. Assume

\begin{align*}
(2) \quad &u_n = 0 \quad \text{if } n \neq q(j), \quad j = 0, 1, 2, 3, \ldots, \quad \text{and} \\
&s_n = O(G_n).
\end{align*}

THEOREM 1 (LORENTZ AND ZELLER [4, p. 402]). Let A be a regular summability method such that

\begin{align*}
(3) \quad &\sum_{q} |a_{pq}| G_q < +\infty \quad \text{for } p = 1, 2, 3, \ldots.
\end{align*}

Then there exist indices $q(1), q(2), \ldots$ for which (2) is a Tauberian condition for A. In addition, one can assume the $q(j)$ belong to a given sequence of indices $n(1), n(2), \ldots$.

In our Theorem 2 below, we not only claim condition (c) of (1) is not necessary in Theorem 1, but also that restriction (3) may be omitted, thus assuring independence between A and the sequence (G_n).

THEOREM 2. Let A be a matrix summability method satisfying conditions (a) and (b) of (1). Then there exist indices $q(1), q(2), \ldots$ for which (2) is a Tauberian condition for A. In addition, one can assume the $q(j)$ to belong to a given sequence of indices $n(1), n(2), \ldots$.
By a dilution of a series we will mean the insertion of zeros between the terms of the series. If \(s \) is the sequence of partial sums of \(\sum u_n \) and \(\sum v_n \) is a dilution of \(\sum u_n \), then we call the sequence \(t \) of partial sums of \(\sum v_n \) a stretching of \(s \). Dilutions and stretchings are sometimes called gap series and gap sequences respectively. In addition to [4], Tauberian theorems for gap sequences (stretchings) may also be found in [1, 2, and 3].

For each stretching \(t \) of \(s \) there exists a regular matrix \(K \) with all entries either 0 or 1 such that \(Ks = t \). We denote the set of all such stretching transformations as \(\Lambda \) and for \(K \in \Lambda \) let \(q_k(0) = 1 \) and \(q_K(j) = 1 + \max \{i : k_{ij} = 1\} \) for \(j = 1, 2, 3, \ldots \). Theorem 2 may now be rewritten using this notation.

THEOREM 2A. Let \(A \) be a matrix summability method satisfying conditions (a) and (b) of (1) and \(n(1), n(2), \ldots \) be an increasing sequence of positive integers. Then there exists \(K \in \Lambda \) with \(q_K(1), q_K(2), \ldots \) a subsequence of \(n(1), n(2), \ldots \) for which condition (b) of (2) and \(A(Ks) \in c \) implies \(s \in c \).

Let \(\epsilon(1), \epsilon(2), \ldots \) be a positive term null sequence. Following Dawson [2], we say the sequence \(x \) contains an \(\epsilon \)-copy of the sequence \(s \) if there exists a subsequence \(y \) of \(x \) such that \(|y_i - s_i| < \epsilon_i \) for \(i = 1, 2, \ldots \). Theorem 2A is a direct consequence of the following result.

THEOREM 3. Let \(A \) be a matrix summability method satisfying conditions (a) and (b) of (1) and \(n(1), n(2), \ldots \) be an increasing sequence of positive integers. If \(|s_n| \leq MG_n \) for each \(n \), then there exists \(K \in \Lambda \) with \(q_K(1), q_K(2), \ldots \) a subsequence of \(n(1), n(2), \ldots \) such that \(A(Ks) \) exists and contains an \(\epsilon \)-copy of \(s \).

PROOF. Suppose \(1 = q(0) < q(1) < \cdots < q(i - 1) = n(r) \) and \(1 \leq p(1) < \cdots < p(i - 1) \) have been determined. We choose \(p(i) > p(i - 1) \) and \(q(i) \in \{n(r + 1), n(r + 2), \ldots\} \) such that

\[
(i) \quad \sum_{j=1}^{q(i)-1} MG(j) \sum_{q=q(j-1)}^{q(i)-1} a_{pq} < \epsilon_i / 2 \quad \text{whenever} \quad p \geq p(i),
\]

\[
(ii) \quad MG(i) \sum_{q=q(i-1)}^{q(i)-1} a_{p(i),q} - 1 < \epsilon_i / 4, \quad \text{and}
\]

\[
(iii) \quad MG(i+1) \sup_{j,p \leq p(i)} \left| \sum_{q=q(i)}^{q(j)} a_{pq} \right| < \max_{j \leq i} \epsilon_j / 2^{i+2}.
\]

The sequence \(q(0), q(1), q(2), \ldots \) thus uniquely determines a \(K \in \Lambda \) such that \(A(Ks) \) exists, and if \(Ks = t \), then

\[
\sum_{q=1}^{\infty} a_{p(q),q} t_q - s_i \leq \epsilon_i
\]

for \(i = 1, 2, 3, \ldots \).

REFERENCES

Department of Mathematics, The University of Texas at Tyler, Tyler, Texas 75701