MORE ON M. E. RUDIN'S DOWKER SPACE

KLAAS PIETER HART

Abstract. It is shown that M. E. Rudin’s Dowker space is finitely-fully normal and orthocompact, thus answering questions of Mansfield and Scott.

0. Introduction. In [Ma] Mansfield defined the notions of κ-full normality and finite-full normality. One of the questions he raised was, whether there exists a finitely-fully normal space which is not an ω_0-fully normal space.

In [Sc] Scott asked whether M. E. Rudin’s Dowker space [Ru] is orthocompact. We answer both questions simultaneously by showing that the above-mentioned space is both finitely-fully normal and orthocompact. Mansfield’s question is hereby answered since in [Ma] he showed that almost ω_0-fully normal spaces are countably paracompact. Almost κ-full normality will not be defined here; it suffices to know that it is weaker than κ-full normality.

1. Definitions and preliminaries.

1.0 κ-full normality and orthocompactness. Let Y be a topological space, \mathcal{U} an open cover of Y and $\kappa \geq 2$ a cardinal. An open cover \mathcal{V} is said to be a κ-star (finite-star) refinement of \mathcal{U} if for all $\mathcal{V}' \subseteq \mathcal{V}$ with $|\mathcal{V}'| \leq \kappa$ (\mathcal{V}' finite) and $\bigcap \mathcal{V}' \neq \emptyset$ there is a $U \in \mathcal{U}$ with $\bigcup \mathcal{V}' \subseteq U$, and \mathcal{V} is a Q-refinement of \mathcal{U} if \mathcal{V} refines \mathcal{U} and $\bigcap \mathcal{V}'$ is open for all $\mathcal{V}' \subseteq \mathcal{V}$. (Recent practice is to call Q-refinements interior-preserving open refinements.)

Y is called κ-fully (finitely-fully) normal [Ma] if every open cover of Y has a κ-star (finite-star) refinement. Y is called orthocompact [Se] if every open cover of Y has a Q-refinement.

1.1 M. E. Rudin’s Dowker space. Let $F = \prod_{n=1}^\infty (\omega_n + 1)$ endowed with the box topology. Furthermore let $X' = \{ f \in F : \forall n \in \mathbb{N} \text{ cf}(f(n)) > \omega_0 \}$ and $X = \{ f \in X' : \exists i \in \mathbb{N} : \forall n \in \mathbb{N} \text{ cf}(f(n)) < \omega_i \}$. Then X is M. E. Rudin’s Dowker space [Ru].

We give an alternative description of the canonical base for X' (and X). For $f, g \in F$ we say

\[f < g \text{ if } f(n) < g(n) \text{ for all } n, \]
\[f \leq g \text{ if } f(n) \leq g(n) \text{ for all } n. \]

For $f, g \in F$ with $f < g$ we let

\[U_{f,g} = \{ h \in X' : f < h \leq g \} \]
and
\[U_{f,g} = U_{f,g} \cap X. \]
Then
\[\{ U_{f,g} : f, g \in F, f < g \} \]
is a base for the topology of \(X^\ell \). Notice that the basic open sets are convex in the partial order \(\leq \) on \(X \), a fact we will use in the proof of Theorem 2.2.

2. The main result. In this section we prove using the results from [Ru] and [Ha] that the Dowker space \(X \) is finitely-fully normal and orthocompact. First we formulate a lemma, the proof of which can be found (implicitly) in the proof in [Ru] that \(X \) is collectionwise normal.

2.0 Lemma. a. Every open cover of \(X' \) has a disjoint refinement consisting of basic open sets.

b. If \(A, B \subseteq X \) are closed and disjoint then
\[\text{Cl}_{X'} A \cap \text{Cl}_{X'} B = \emptyset. \]

The next result is from [Ha].

2.1 Lemma. For all \(n \in \mathbb{N} \): \((X')^n \) is homeomorphic to \(X' \), and the homeomorphism can be chosen to map \(X^n \) onto \(X \).

Now we are ready to prove the main result.

2.2 Theorem. The space \(X \) is both 2-fully normal and orthocompact.

Proof. Let \(\mathcal{U} \) be a basic open cover of \(X \). Put \(U = \bigcup\{ 0 \times 0 \times 0 : 0 \in \mathcal{U} \} \); \(U \) is a neighborhood of \(\{(x, x, x) : x \in X\} \) in \(X^3 \). Using 2.1 and 2.0b find a neighborhood \(U' \) of \(\{(x, x, x) : x \in X'\} \) in \((X')^3 \) such that \(U' \cap X^3 = U \).

For \(x \in X' \setminus X \), choose \(U_x \subseteq x \) open such that \(U_x \cap X^3 = U \).

By 2.0a let \(\mathcal{O}' \) be a disjoint basic open refinement of the open cover
\[\{ X' \setminus \text{Cl}_{X'}(X \setminus 0) \}_{0 \in \mathcal{U}} \cup \{ U_x \}_{x \in X' \setminus X}. \]

Let \(\emptyset = \{ 0' \cap X : 0' \in \mathcal{O}' \} \).

Let 0 \in \emptyset and \(\{ x, y, z \} \subseteq 0 \).

Then \(\{ x, y, z \} \subseteq \text{some} V \in \mathcal{U} \) or \(\{ x, y, z \} \subseteq \text{some} U_p \), but then \(\{ x, y, z \} \subseteq U_p \cap X^3 \subseteq U \), so \(\{ x, y, z \} \subseteq V^3 \) for some \(V \in \mathcal{U} \) in any case. This implies that \(\{ x, y, z \} \subseteq V \).

For each \(0 \in \emptyset \) define \(\mathcal{W}_0 \) as follows: \(0 = U_{p,q} \) for some \(p, q \in F \), so put \(\mathcal{W}_0 = \{ U_{p,q} : x \in 0 \} \). Let \(\mathcal{W} = \bigcup \{ \mathcal{W}_0 : 0 \in \emptyset \} \). Then \(\mathcal{W} \) is both a 2-star and a \(Q \)-refinement of \(\mathcal{U} \).

First, assume \(U_{p,x} \cap U_{q,y} \neq \emptyset \) for some \(U_{p,x} \) and \(U_{q,y} \) in \(\mathcal{W} \). Then \(x \) and \(y \) are elements of the same \(0 \in \emptyset \) and hence \(p = q \). Define \(p' \) by \(p'(n) = p(n) + \omega_1 \) \((n \in \mathbb{N})\); then \(p < p' \leq x \) and \(p' \in X \), so \(p' \in 0 \).

Pick \(u \in \mathcal{U} \) such that \(\{ p', x, y \} \subseteq U \). Since \(U \) is basic (and hence \(\leq \)-convex) and \(U_{p,z} = \{ t : p' \leq t \leq z \} \) for \(z = x, y \), it follows that \(U_{p,x} \cup U_{p,y} \subseteq U \). So \(\mathcal{W} \) is a 2-star refinement of \(\mathcal{U} \). Second, let \(\mathcal{W}' \subseteq \mathcal{W} \) with \(\cap \mathcal{W}' = \emptyset \). Then all \(W \in \mathcal{W}' \) are
510
K. P. HART

contained in the same \(0 \in \mathcal{O}\), so \(\mathcal{W}' = \{U_{p,x} : x \in A\}\) for some subset \(A\) of \(0\), where \(0 = U_{p,q}\). Define \(f\) by \(f(n) = \min\{x(n) : x \in A\}\). Then \(\cap \mathcal{W}' = U_{p,f}\) is open. So \(\mathcal{W}\) is a \(Q\)-refinement of \(\mathcal{U}\). \(\square\)

It now follows easily that \(X\) is finitely-fully normal:

2.3 Corollary. \(X\) is finitely-fully normal.

Proof. Let \(\mathcal{U}\) be an open cover of \(X\). Let \(\mathcal{V}_1\) be a 2-star refinement of \(\mathcal{U}\), and (inductively) let \(\mathcal{V}_{n+1}\) be a 2-star refinement of \(\mathcal{V}_n\) (\(n \in \mathbb{N}\)). Since \(X\) is a \(P\)-space (\(G_\delta\)'s are open) we can take the common refinement of all \(\mathcal{V}_n\); call it \(\mathcal{V}\). Let \(\mathcal{V}' \subseteq \mathcal{V}\) be finite with \(\cap \mathcal{V}' \neq \emptyset\). Pick \(n \in \mathbb{N}\) such that \(2^n \geq |\mathcal{V}'|\). Since \(\mathcal{V}\) refines \(\mathcal{V}_n\) and since \(\mathcal{V}_n\) is a \(2^n\)-star refinement of \(\mathcal{U}\), it follows that \(\bigcup \mathcal{V}'\) is contained in some \(U \in \mathcal{U}\). \(\square\)

References

[Ru] M. E. Rudin, A normal space \(X\) for which \(X \times I\) is not normal, Fund. Math. 73 (1971), 179–186.

SUBFACULTEIT WISKUNDE, VRIJE UNIVERSITEIT, DE BOELELAAN 1081, 1081 HV AMSTERDAM, THE NETHERLANDS