On quaternionic James numbers and almost-quaternion substructures on the sphere
Author:
Turgut Önder
Journal:
Proc. Amer. Math. Soc. 86 (1982), 535-540
MSC:
Primary 55S40; Secondary 53C15
DOI:
https://doi.org/10.1090/S0002-9939-1982-0671231-X
MathSciNet review:
671231
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper a theorem about the relation between the divisibility of orders of obstructions to cross sectioning symplectic Stiefel manifolds and quaternionic James numbers is proved. As an application of this, the existence problem of almost-quaternion -substructures on the sphere
is solved for all
and
except for the case
,
for some
.
- [1] J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603–632. MR 139178, https://doi.org/10.2307/1970213
- [2] M. F. Atiyah, Thom complexes, Proc. London Math. Soc. (3) 11 (1961), 291–310. MR 0131880, https://doi.org/10.1112/plms/s3-11.1.291
- [3] I. Dibag, Almost-complex substructures on the sphere, Proc. Amer. Math. Soc. 61 (1976), no. 2, 361–366 (1977). MR 423248, https://doi.org/10.1090/S0002-9939-1976-0423248-5
- [4] D. Husemoller, Fibre bundles, Springer-Verlag, Berlin and New York, 1966.
- [5] I. M. James, Cross-sections of Stiefel manifolds, Proc. London Math. Soc. (3) 8 (1958), 536–547. MR 0100840, https://doi.org/10.1112/plms/s3-8.4.536
- [6] I. M. James, Spaces associated with Stiefel manifolds, Proc. London Math. Soc. (3) 9 (1959), 115–140. MR 0102810, https://doi.org/10.1112/plms/s3-9.1.115
- [7] Peter J. Kahn, Mixing homotopy types of manifolds, Topology 14 (1975), no. 3, 203–216. MR 377937, https://doi.org/10.1016/0040-9383(75)90001-4
- [8] François Sigrist, Sur les nombres de James des variétés de Stiefel complexes, Illinois J. Math. 13 (1969), 198–201 (French). MR 0248828
- [9] François Sigrist and Ulrich Suter, Cross-sections of symplectic Stiefel manifolds, Trans. Amer. Math. Soc. 184 (1973), 247–259. MR 326728, https://doi.org/10.1090/S0002-9947-1973-0326728-8
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55S40, 53C15
Retrieve articles in all journals with MSC: 55S40, 53C15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1982-0671231-X
Keywords:
Sectioning fiber spaces and bundles,
almost-complex,
contact,
symplectic,
almost product structures
Article copyright:
© Copyright 1982
American Mathematical Society