The recovery of some abelian groups from their socles
HTML articles powered by AMS MathViewer
- by Paul Hill
- Proc. Amer. Math. Soc. 86 (1982), 553-560
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674080-1
- PDF | Request permission
Abstract:
The first main result of this paper is that summable isotype subgroups inherit total projectivity. This means: ($\ast$) if an isotype subgroup of a totally projective group has a free socle (viewed as a valuated vector space) then the socle completely determines the subgroup up to isomorphism. The next major result is that ($\ast$) does not generalize to the case where the socle is that of a totally projective group of length exceeding $\Omega$, nor does ($\ast$) generalize to the case where the socle is that of an $S$-group of length $\Omega$. Finally, it is shown that if, in addition to $H$ being isotype in a d.s.c. group $G$, it is also known that $K/H$ is divisible where $K$ is the closure of $H$ in $G$ relative to the ${p^\Omega }$-topology, then ($\ast$) again prevails when the socle is that of an $S$-group.References
- Doyle O. Cutler, Another summable $C_{\Omega }$-group, Proc. Amer. Math. Soc. 26 (1970), 43–44. MR 262355, DOI 10.1090/S0002-9939-1970-0262355-1
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- László Fuchs, Subfree valued vector spaces, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 158–167. MR 0480700 P. Hill, On the classification of abelian groups, photocopied manuscript, Houston, 1967.
- Paul Hill, Isotype subgroups of direct sums of countable groups, Illinois J. Math. 13 (1969), 281–290. MR 240198
- Paul Hill, A summable $C_{\Omega }$-group, Proc. Amer. Math. Soc. 23 (1969), 428–430. MR 245674, DOI 10.1090/S0002-9939-1969-0245674-6 —, Criteria for freeness in abelian groups and valuated vector spaces, Lecture Notes in Math., vol. 616, Springer-Verlag, Berlin and New York, 1977, pp. 145-157.
- Paul Hill, Isotype subgroups of totally projective groups, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 305–321. MR 645937
- Paul Hill and Charles Megibben, On direct sums of countable groups and generalizations, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 183–206. MR 0242943
- Roger Hunter and Elbert Walker, $S$-groups revisited, Proc. Amer. Math. Soc. 82 (1981), no. 1, 13–18. MR 603592, DOI 10.1090/S0002-9939-1981-0603592-0
- Irving Kaplansky, Infinite abelian groups, Revised edition, University of Michigan Press, Ann Arbor, Mich., 1969. MR 0233887
- Irving Kaplansky and George W. Mackey, A generalization of Ulm’s theorem, Summa Brasil. Math. 2 (1951), 195–202. MR 49165
- George Kolettis Jr., Direct sums of countable groups, Duke Math. J. 27 (1960), 111–125. MR 110748
- R. J. Nunke, Homology and direct sums of countable abelian groups, Math. Z. 101 (1967), 182–212. MR 218452, DOI 10.1007/BF01135839
- Fred Richman and Elbert A. Walker, Valuated groups, J. Algebra 56 (1979), no. 1, 145–167. MR 527162, DOI 10.1016/0021-8693(79)90330-2
- Helmut Ulm, Zur Theorie der abzählbar-unendlichen Abelschen Gruppen, Math. Ann. 107 (1933), no. 1, 774–803 (German). MR 1512826, DOI 10.1007/BF01448919
- R. B. Warfield Jr., A classification theorem for abelian $p$-groups, Trans. Amer. Math. Soc. 210 (1975), 149–168. MR 372071, DOI 10.1090/S0002-9947-1975-0372071-2
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 553-560
- MSC: Primary 20K25; Secondary 20K10, 20K27
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674080-1
- MathSciNet review: 674080