Quantitative behaviour of the norms of an analytic measure
HTML articles powered by AMS MathViewer
- by Louis Pigno and Brent Smith
- Proc. Amer. Math. Soc. 86 (1982), 581-585
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674084-9
- PDF | Request permission
Abstract:
A Littlewood-Paley type inequality for the quotient norms of an analytic measure is obtained; one consequence of this inequality is the classical theorem of F. and M. Riesz.References
- Paul J. Cohen, On a conjecture of Littlewood and idempotent measures, Amer. J. Math. 82 (1960), 191–212. MR 133397, DOI 10.2307/2372731
- H. Davenport, On a theorem of P. J. Cohen, Mathematika 7 (1960), 93–97. MR 124681, DOI 10.1112/S0025579300001625
- Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 222569, DOI 10.1090/S0002-9939-1968-0222569-4
- John J. F. Fournier, On a theorem of Paley and the Littlewood conjecture, Ark. Mat. 17 (1979), no. 2, 199–216. MR 608315, DOI 10.1007/BF02385468
- O. Carruth McGehee, Louis Pigno, and Brent Smith, Hardy’s inequality and the Littlewood conjecture, Bull. Amer. Math. Soc. (N.S.) 5 (1981), no. 1, 71–72. MR 614316, DOI 10.1090/S0273-0979-1981-14925-9
- Louis Pigno and Brent Smith, On measures of analytic type, Proc. Amer. Math. Soc. 82 (1981), no. 4, 541–547. MR 614875, DOI 10.1090/S0002-9939-1981-0614875-2 F. and M. Riesz, Über die Randwerte einer analytischen Funktion, Quatrième Congrès des Math. Scand. Stockholm (1916), 27-44. E. M. Stein, Classes ${H^p}$ multiplicateurs et fonctions de Littlewood-Paley, C. R. Acad. Sci. Paris Sér. A 263 (1966), 780-781.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 581-585
- MSC: Primary 43A17; Secondary 43A25
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674084-9
- MathSciNet review: 674084