Strongly ergodic sequences of integers and the individual ergodic theorem
HTML articles powered by AMS MathViewer
- by J. R. Blum and J. I. Reich
- Proc. Amer. Math. Soc. 86 (1982), 591-595
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674086-2
- PDF | Request permission
Abstract:
Let $S = \{ {k_1},{k_2}, \ldots \}$ be an increasing sequence of positive integers. We call $S$ strongly ergodic if for every measure preserving transformation $T$ on a probability space $(\Omega ,\mathcal {F},P)$ and every $f \in {L_1}(\Omega )$ we have ${\lim _{n \to \infty }}(1/n)\sum \nolimits _{j = 1}^n {f({T^{kj}}\omega ) = Pf(\omega )}$ a.e. where $Pf$ is the appropriate limit guaranteed by the individual ergodic theorem. We give sufficient conditions for a sequence $S$ to be strongly ergodic and provide examples.References
- Julius Blum and Bennett Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423–429. MR 330412, DOI 10.1090/S0002-9939-1974-0330412-0
- J. R. Blum and R. Cogburn, On ergodic sequences of measures, Proc. Amer. Math. Soc. 51 (1975), 359–365. MR 372529, DOI 10.1090/S0002-9939-1975-0372529-1
- William R. Emerson, The pointwise ergodic theorem for amenable groups, Amer. J. Math. 96 (1974), 472–487. MR 354926, DOI 10.2307/2373555
- Adriano M. Garsia, Topics in almost everywhere convergence, Lectures in Advanced Mathematics, No. 4, Markham Publishing Co., Chicago, Ill., 1970. MR 0261253
- Jakob I. Reich, On the individual ergodic theorem for subsequences, Ann. Probability 5 (1977), no. 6, 1039–1046. MR 444906, DOI 10.1214/aop/1176995673
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 591-595
- MSC: Primary 28D05; Secondary 47A35, 60F15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674086-2
- MathSciNet review: 674086