Factorization in codimension one ideals of group algebras
HTML articles powered by AMS MathViewer
- by George Willis
- Proc. Amer. Math. Soc. 86 (1982), 599-601
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674088-6
- PDF | Request permission
Abstract:
It is shown that if $G$ is a locally compact group and $I$ is a closed, two-sided ideal with codimension one in ${L^1}(G)$, then ${I^2} = I$.References
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- Gavin Brown and William Moran, Point derivations on $M(G)$, Bull. London Math. Soc. 8 (1976), no. 1, 57–64. MR 417695, DOI 10.1112/blms/8.1.57
- H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), no. 2, 129–183. MR 500923, DOI 10.1112/blms/10.2.129
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Hans Reiter, Sur certains idéaux dans $L^{1}(G)$, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A882–A885 (French). MR 244711
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 599-601
- MSC: Primary 43A20
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674088-6
- MathSciNet review: 674088