NORM ATTAINING OPERATORS AND SIMULTANEOUSLY CONTINUOUS RETRACTIONS

JERRY JOHNSON AND JOHN WOLFE

ABSTRACT. A compact metric space S is constructed and it is shown that there is a bounded linear operator \(T: L^1[0,1] \to C(S) \) which cannot be approximated by a norm attaining operator. Also it is established that there does not exist a retract of \(L^\infty[0,1] \) onto its unit ball which is simultaneously weak* continuous and norm uniformly continuous.

1. Introduction. Let \(X \) and \(Y \) be Banach spaces. A linear operator \(T: X \to Y \) is called norm attaining if there is an \(x \in X \) with \(\|x\| = 1 \) and \(\|Tx\| = \|T\| \). Schachermayer in [5] has constructed an example of an operator \(T_0: L^1[0,1] \to C[0,1] \) such that if \(\|T - T_0\| < \frac{1}{2} \) and \(\|T\| \leq 1 \) then \(T \) is not norm attaining. This is the first example of a pair of classical Banach spaces \(X, Y \) such that the norm attaining operators from \(X \) to \(Y \) are not dense. Unfortunately, Schachermayer's example is very lengthy and intricate.

In this note we provide a simple example of a compact metric space \(S \) and an operator \(T_0: L^1[0,1] \to C(S) \) such that if \(\|T - T_0\| < \frac{1}{2} \) and \(\|T\| \leq 1 \), then \(T \) is not norm attaining. This is Corollary 2. The ideas are definitely inspired by Schachermayer's construction.

This example will be a simple corollary of Theorem 1. Another corollary provides an answer to a question of Benyamini concerning retractions on dual spaces. By a selection argument there is always a weak* continuous retraction of the dual of any separable Banach space onto its unit ball (the retraction \(x \to x/\|x\| \) for \(\|x\| \geq 1 \) is norm continuous but never weak* continuous except in the finite dimensional case). Benyamini [1] proved an embedding result about separable \(C(K) \) spaces by establishing the existence of a retraction of the dual of \(C[0,1] \) onto its unit ball which is simultaneously weak* continuous and norm uniformly continuous. Then in [2] Benyamini goes on to show that such simultaneously continuous retractions exist in the dual of \(L^p \) or \(Lp^*[0,1] \) for \(1 < p < \infty \). We will show that no such retraction is possible in the dual of \(L^1[0,1] \). This is Corollary 3.

Notation is standard (cf. [3]), all subsets of \([0,1]\) below are assumed to be Borel and \(m \) denotes Lebesgue measure.

Let \(S_0 = \{\sum_{i=1}^{n} (1 - 2^{-i}) \chi_{D_i} : D_i \subset [0,1] \text{ are disjoint and } mD_i < 2^{-1}\} \). Throughout this note \(S \) will denote the weak* closure of \(S_0 \) in \(L^\infty[0,1] = L^1[0,1]^* \). Thus, \(S \) is a compact metric space whose essential property for our purposes is contained in the following.
THEOREM 1. Let $\psi : S \to L^\infty$ be weak* continuous and suppose, for each $s \in S$, $\|\psi(s) - s\|_\infty \leq \frac{1}{2}$ and $\|\psi(s)\|_\infty \leq 1$. Then for each $s \in S$ and each $k \geq 2$
\[m\{\omega \in [0,1] | \psi(s)(\omega) > 1 - 2^{-k-2}\} \leq 16 \cdot 2^{-k}. \]

The applications of this result stem from the following observation. Consider the points $g \in L^\infty[0,1]$ such that $\|g\| = 1$ and $m\{\omega : |g(\omega)| = \|g\| = 1\} > 0$. Such points g are dense in the surface of the ball in L^∞ and lie arbitrarily close to S, but they do not satisfy the distributional condition of Theorem 1. It is somewhat surprising that it is impossible to move the points in S around the unit ball of L^∞ in a weak* continuous manner (with no point moved more than norm distance $\frac{1}{3}$) by a map ψ such that one of the many nearby points g as above is in the range of ψ.

This theorem will be proved in §3. We now state the two applications which will be derived from Theorem 1 in §2.

COROLLARY 2. Define $T_0 : L^1[0,1] \to C(S)$ by $T_0f(s) = \int_0^1 f(\omega)s(\omega) d\omega$ for $f \in L^1$ and $s \in S$. If $T : L^1[0,1] \to C(S)$ is a linear operator with $\|T - T_0\| \leq \frac{1}{2}$ and $\|T\| \leq 1$ then T is not norm attaining.

COROLLARY 3. There is no weak* continuous and norm uniformly continuous retraction of $L^\infty[0,1]$ onto its unit ball.

ACKNOWLEDGEMENT. The connection between a counterexample as in Corollary 2 and Corollary 3 was observed independently by the second author, W. Schachermayer and C. Stagall during a lecture by Y. Benyamini delivered at Oberwolfach in the summer of 1981.

2. Proofs of Corollaries 1 and 2. To see Theorem 1 implies Corollary 2 observe the well-known fact (cf. [3 and 4]) that $T : L^1[0,1] \to C(S)$ corresponds canonically to a weak* continuous function $\psi : S \to L^\infty[0,1]$ and that T is norm attaining if and only if there is a point $s \in S$ such that $\|\psi(s)\| = \|T\| = \|\psi\|$ and $\psi(s)$ is norm attaining as a functional on $L^1[0,1]$; i.e. there is a set E so that $mE > 0$ and $|\psi(s)| = \|\psi\|$ on E. Now, the identity map: $S \to L^\infty[0,1]$ represents T_0 and so $\|\psi(s) - s\| \leq \frac{1}{3}$. Hence Theorem 1 implies the desired result.

Now, to see that Theorem 1 yields Corollary 3 suppose such a retraction φ exists. Choose $\delta > 0$ such that $\|f - g\| < \delta$ implies $\|\varphi(f) - \varphi(g)\| < \frac{1}{2}$. Let $s_0 \in S$ be of norm 1 (e.g. $s_0 = \sum_{n=1}^{\infty} (1 - 2^{-n}) \chi_{D_n}$, $D_n = (2^{n-1}, 2^{-n})$). There is a function $g \in L^\infty[0,1]$ with $g(\omega) = \|g\| = 1$ on a set of positive measure and $\|g - s_0\| < \delta$. Define $\varphi : S \to L^\infty[0,1]$ by $\varphi(s) = \varphi(s + g - s_0)$. Then $\|\varphi(s) - s\| = \|\varphi(s + g - s_0) - \varphi(s)\| \leq \frac{1}{2}$ since $\|s + g - s_0 - s\| < \delta$. Also $\|\varphi\| \leq 1$ and $\varphi(s_0) = \varphi(g) = g$. This contradicts Theorem 1.

3. Proof of Theorem 1. In order to prove Theorem 1 we need the following:

LEMMA 1. Suppose $s = \sum_{i=1}^{n} (1 - 2^{-i})\psi_{D_i} \in S_0$. Then $\|\psi(s)\|_{D_i} \leq 1 - 2^{-i-2}$ for each $i = 1, \ldots, n$.

Before we prove Lemma 1, let us show how Theorem 1 follows from it.
To do this first observe that for $s = \sum_{i=1}^{n} (1 - 2^{-i})\psi_{D_i} \in S_0$ and for $k \leq 2$,
\[m\{\omega | |\psi(s)(\omega) - 1| > 2^{-k}\} \leq 8 \cdot 2^{-k}. \]
For, if \(A = \{\omega | \psi(s)(\omega) \geq 1 - 2^{-k}\} \), then by Lemma 1, \(m(A \cap D_i) = 0 \) when \(1 - 2^{-i-2} < 1 - 2^{-k} \); i.e. when \(i < k - 2 \). Also, \(m(\bigcup_{i=1}^{n} D_i) = 0 \) since \(||\psi(s) - s|| \leq \frac{1}{2} \) and \(k \geq 2 \). Thus \(mA \leq \sum_{i=k-2}^{n} mD_i \leq \sum_{i=k-2}^{n} 2^{-i} = 8 \cdot 2^{-k} \), and (0) holds. Now if the conclusion of Theorem 1 fails, then for some \(s \in S \) and \(k \geq 2 \), there is a set \(E \) with \(mE = 16 \cdot 2^{-k} \) and \(\int_E \psi(s) \geq mE(1 - 2^{-k-2}) \). Given any \(\epsilon > 0 \), we may choose \(s_1 \in S_0 \) such that \(\int_E \psi(s) \leq \int_E \psi(s_1) + \epsilon \), since \(S_0 \) is weak* dense in \(S \). Using (0) we may break \(E \) into two sets \(E_1 \) and \(E_2 \) with \(mE_1 = mE_2 = \frac{1}{2} mE = 8 \cdot 2^{-k} \) so that \(\psi(s_1) < 1 - 2^{-k} \) on \(E_2 \). Thus

\[
mE(1 - 2^{-k-2}) \leq \int_E \psi(s) \leq \int_{E_1} \psi(s_1) + \int_{E_2} \psi(s_1) + \epsilon
\leq mE_1 + (1 - 2^{-k})mE_2 + \epsilon = mE(1 - 2^{-k-1}) + \epsilon.
\]

Since \(\epsilon > 0 \) is arbitrary, we have a contradiction and Theorem 1 is proved.

In order to prove Lemma 1, we require the following simple observations:

Suppose \(s = \sum_{i=1}^{n} \alpha_i \chi_{D_i} \), with \(0 < \alpha_i < 1 \) and the \(D_i \)'s disjoint. Let \(A \) be a fixed subset of some \(D_i \) and let \(\Pi = \{A_1, \ldots, A_k\} \) be a partition of \(A \). Choose \(C_j \subseteq A_j \) with \(mC_j = 2\alpha_i mA/(1 + \alpha_i) \) and define

\[
T_{\Pi}s = \sum_{j=1}^{k} \frac{1 + \alpha_i}{2} \chi_{C_j} + s \chi_{A}.
\]

The following are easy to check:

1. \(\int_{A_j} s = \int_{A_j} (1 + \alpha_i) \chi_{C_j}/2 \).
2. \(\int_{F} s = \int_{F} T_{\Pi}s \) if \(f \cap A = \emptyset \) or if \(F \) is a union of sets from \(\Pi \). (This follows from (1).)
3. \(m(\{\omega | T_{\Pi}s(\omega) = 0\} \cap A) = (1 - \alpha_i)mA/(1 + \alpha_i) \).
4. \(\text{Weak*}-\lim_{\Pi} T_{\Pi}s = s \) where the limit is taken over partitions of \(A \) ordered by refinement.

Property (4) follows from (2). For, if \(E \subset [0,1] \) and \(\Pi \) is a refinement of \(\{A \cap E, A \sim E\} \), then

\[
\int_E T_{\Pi}s = \int_{E \sim A} T_{\Pi}s + \int_{E \cap A} T_{\Pi}s + \int_{A \sim E} T_{\Pi}s
= \int_{E \sim A} s + \int_{E \cap A} s + \int_{A \sim E} s = \int_E s.
\]

Now, assume \(s \in S_0 \) and Lemma 1 fails. Then there is a set \(A \subset D_i \) such that \(mA > 0 \), \((1/mA) \int_A \psi(s) > 1 - 2^{-i-2} \) and \(mA + mD_{i+1} < 2^{-i-1} \). But if \(\Pi \) is a partition of \(A \) and if \(E = \{\omega | T_{\Pi}s(\omega) = 0\} \cap A \), then \(T_{\Pi}s \in S_0 \) and

\[
\int_A \psi(T_{\Pi}s) = \int_{A \sim E} \psi(T_{\Pi}s) + \int_E \psi(T_{\Pi}s) \leq mA(A \sim E) + \frac{1}{2} mE.
\]

A simple calculation using the definition of \(T_{\Pi} \) shows that \(mA(A \sim E) + \frac{1}{2} mE \leq mA(1 - 2^{-i-2}) \).

Now, taking the weak* limit on \(\Pi \) and using (4) we get that

\[
\int_A \psi(s) \leq mA(1 - 2^{-i-2}),
\]

a contradiction.

This completes the proof of Lemma 1.
REFERENCES

2. ——, *Simultaneously continuous retractions on the unit wall of a Banach space*, preprint.

DEPARTMENT OF MATHEMATICS, OKLAHOMA STATE UNIVERSITY, STILLWATER, OKLAHOMA 74078