Uniqueness of solutions of partial differential equations when the initial surface is characteristic at a point
HTML articles powered by AMS MathViewer
- by Letitia J. Korbly
- Proc. Amer. Math. Soc. 86 (1982), 617-624
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674093-X
- PDF | Request permission
Abstract:
Uniqueness in the Cauchy problem for hyperbolic operators degenerate at a point on the initial surface depends on values of the coefficients of the lower order terms. If the operator $P$ is doubly characteristic at the origin with respect to the $t = 0$ line, $P$ has uniqueness for functions which are smooth enough if the coefficient of the ${D_t}$ term does not lie in a certain discrete set of numbers.References
- Louis Boutet de Monvel and François Trèves, On a class of pseudodifferential operators with double characteristics, Invent. Math. 24 (1974), 1–34. MR 353064, DOI 10.1007/BF01418785
- Louis Boutet de Monvel and François Trèves, On a class of systems of pseudodifferential equations with double characteristics, Comm. Pure Appl. Math. 27 (1974), 59–89. MR 350232, DOI 10.1002/cpa.3160270105
- M. S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26 (1973), 455–475. MR 338532, DOI 10.1002/cpa.3160260403
- Antonio Gilioli and François Trèves, An example in the solvability theory of linear PDE’s, Amer. J. Math. 96 (1974), 367–385. MR 355285, DOI 10.2307/2373639
- Lars Hörmander, Linear partial differential operators, Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York, Inc., New York, 1969. Third revised printing. MR 0248435
- A. Menikoff, Uniqueness of the Cauchy problem for a class of partial differential equations with double characteristics, Indiana Univ. Math. J. 25 (1976), no. 1, 1–21. MR 399626, DOI 10.1512/iumj.1976.25.25001
- François Trèves, Concatenations of second-order evolution equations applied to local solvability and hypoellipticity, Comm. Pure Appl. Math. 26 (1973), 201–250. MR 340804, DOI 10.1002/cpa.3160260206 —, Linear partial differential equations with constant coefficients, Gordon & Breach, New York, 1956. —, A link between local solvability of pseudodifferential operators and uniqueness in the Cauchy problem, Amer. J. Math. 94 (1972), 167-188.
- François Trèves, Discrete phenomena in uniqueness in the Cauchy problem, Proc. Amer. Math. Soc. 46 (1974), 229–233. MR 352679, DOI 10.1090/S0002-9939-1974-0352679-5
- M. H. Protter, The Cauchy problem for a hyperbolic second order equation with data on the parabolic line, Canad. J. Math. 6 (1954), 542–553. MR 64269, DOI 10.4153/cjm-1954-059-x M. I. Višik and V. V. Grušin, Elliptic pseudodifferential operators on a closed manifold which degenerate on a submanifold, Soviet Math. Dokl. 10 (1969), 1316-1320.
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 617-624
- MSC: Primary 35L15
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674093-X
- MathSciNet review: 674093