Orthogonal expansions of vectors in a Hilbert space for non-Gaussian measures
HTML articles powered by AMS MathViewer
- by Yoshiaki Okazaki
- Proc. Amer. Math. Soc. 86 (1982), 638-640
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674096-5
- PDF | Request permission
Abstract:
Let $\mathcal {H}$ be a separable Hilbert space and $\mu$ a probability Radon measure on $\mathcal {H}$ of second order. Then there exist $({a_n}) \in {l^2}$, an O.N.S. $({x_n}) \subset \mathcal {H}$ and an O.N.S. $({\xi _n}) \subset H$ such that the orthogonal series $\sum \nolimits _{n = 1}^\infty {{a_n}{\xi _n}(x){x_n}}$ converges in $\mathcal {H}$ $\mu$-almost everywhere and it holds that $x = \sum \nolimits _{n = 1}^\infty {{a_n}{\xi _n}(x){x_n}}$, $\mu$-almost everywhere, where $H$ is the generating Hubert space of $\mu$. In the case where $\mu$ is a Gaussian measure, a similar result was proved by Kuelbs [2] in general Banach spaces.References
- Kiyosi Itô and Makiko Nisio, On the convergence of sums of independent Banach space valued random variables, Osaka Math. J. 5 (1968), 35–48. MR 235593
- J. Kuelbs, Expansions of vectors in a Banach space related to Gaussian measures, Proc. Amer. Math. Soc. 27 (1971), 364–370. MR 267615, DOI 10.1090/S0002-9939-1971-0267615-7
- J. Kuelbs, A strong convergence theorem for Banach space valued random variables, Ann. Probability 4 (1976), no. 5, 744–771. MR 420771, DOI 10.1214/aop/1176995982
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 638-640
- MSC: Primary 60B11
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674096-5
- MathSciNet review: 674096