Inner amenability and fullness
HTML articles powered by AMS MathViewer
- by Marie Choda
- Proc. Amer. Math. Soc. 86 (1982), 663-666
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674101-6
- PDF | Request permission
Abstract:
Let $G$ be a countable group which is not inner amenable. Then the II$_{1}$-factor $M$ is full in the following cases: (1) $M$ is given by the group measure space construction from a triple $(X,\mu ,G)$ with respect to a strongly ergodic measure preserving action of $G$ on a probability space $(X,\mu )$. (2) $M$ is the crossed product of a full II$_{1}$-factor by $G$ with respect to an action.References
- Charles A. Akemann and Martin E. Walter, Unbounded negative definite functions, Canadian J. Math. 33 (1981), no. 4, 862–871. MR 634144, DOI 10.4153/CJM-1981-067-9
- M. Choda and Y. Watatani, Fixed point algebra and property $T$, Math. Japon. 27 (1982), no. 2, 263–266. MR 655229
- Marie Choda, Property T and fullness of the group measure space construction, Math. Japon. 27 (1982), no. 4, 535–539. MR 667819
- A. Connes, Almost periodic states and factors of type $\textrm {III}_{1}$, J. Functional Analysis 16 (1974), 415–445. MR 0358374, DOI 10.1016/0022-1236(74)90059-7
- Klaus Schmidt, Asymptotically invariant sequences and an action of $\textrm {SL}(2,\,\textbf {Z})$ on the $2$-sphere, Israel J. Math. 37 (1980), no. 3, 193–208. MR 599454, DOI 10.1007/BF02760961
- Edward G. Effros, Property $\Gamma$ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483–486. MR 355626, DOI 10.1090/S0002-9939-1975-0355626-6
- Yoshinori Haga and Zirô Takeda, Correspondence between subgroups and subalgebras in a cross product von Neumann algebra, Tohoku Math. J. (2) 24 (1972), 167–190. MR 380439, DOI 10.2748/tmj/1178241528
- D. A. Každan, On the connection of the dual space of a group with the structure of its closed subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74 (Russian). MR 0209390
- F. J. Murray and J. von Neumann, On rings of operators. IV, Ann. of Math. (2) 44 (1943), 716–808. MR 9096, DOI 10.2307/1969107
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 663-666
- MSC: Primary 46L35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674101-6
- MathSciNet review: 674101