A short proof that compact quasidevelopable spaces are metrizable
HTML articles powered by AMS MathViewer
- by H. R. Bennett
- Proc. Amer. Math. Soc. 86 (1982), 667-668
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674102-8
- PDF | Request permission
Abstract:
A new characterization of quasidevelopable spaces is given that allows an easier proof that compact quasidevelopable spaces are metrizable.References
- Harold R. Bennett, A note on the metrizability of $M$-spaces, Proc. Japan Acad. 45 (1969), 6–9. MR 246254 —, On quasi-developable spaces, General Topology Appl. 2 (1972), 49-55.
- Robert W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math. 12 (1962), 1301–1319. MR 166759
- Kenneth Kunen, Set theory, Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs. MR 597342
Bibliographic Information
- © Copyright 1982 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 86 (1982), 667-668
- MSC: Primary 54E30; Secondary 54E35
- DOI: https://doi.org/10.1090/S0002-9939-1982-0674102-8
- MathSciNet review: 674102