Polynômes de Jacobi, interprétation combinatoire et fonction génératrice
Authors:
Dominique Foata and Pierre Leroux
Journal:
Proc. Amer. Math. Soc. 87 (1983), 47-53
MSC:
Primary 33A65; Secondary 05A15
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677229-0
MathSciNet review:
677229
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This classical generating function for the Jacobi polynomials is derived by purely combinatorial methods.
- [1] Richard Askey, Jacobi’s generating function for Jacobi polynomials, Proc. Amer. Math. Soc. 71 (1978), no. 2, 243–246. MR 486693, https://doi.org/10.1090/S0002-9939-1978-0486693-X
- [2] Edward A. Bender and Jay R. Goldman, Enumerative uses of generating functions, Indiana Univ. Math. J. 20 (1970/71), 753–765. MR 270931, https://doi.org/10.1512/iumj.1971.20.20060
- [3] L. Carlitz, The generating function for the Jacobi polynomial, Rend. Sem. Mat. Univ. Padova 38 (1967), 86–88. MR 222357
- [4] Louis Comtet, Analyse combinatoire. Tomes I, II, Collection SUP: “Le Mathématicien”, 4, vol. 5, Presses Universitaires de France, Paris, 1970 (French). MR 0262087
- [5] Dominique Foata, La série génératrice exponentielle dans les problèmes d’énumération, Les Presses de l’Université de Montréal, Montreal, Que., 1974 (French). Avec un chapitre sur les identités probabilistes dérivées de la formule exponentielle, par B. Kittel; Séminaire de Mathématiques Supérieures, No. 54 (Été, 1971). MR 0505546
- [6] D. Foata and V. Strehl, Combinatorics of Laguerre polynomials, prépublication, Univ. Strasbourg, 1981.
- [7] André Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42 (1981), no. 1, 1–82 (French, with English summary). MR 633783, https://doi.org/10.1016/0001-8708(81)90052-9
- [8] Gilbert Labelle, Une nouvelle démonstration combinatoire des formules d’inversion de Lagrange, Adv. in Math. 42 (1981), no. 3, 217–247 (French). MR 642392, https://doi.org/10.1016/0001-8708(81)90041-4
- [9] Earl D. Rainville, Special functions, The Macmillan Co., New York, 1960. MR 0107725
- [10] John Riordan, An introduction to combinatorial analysis, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594
- [11] Richard P. Stanley, Generating functions, Studies in combinatorics, MAA Stud. Math., vol. 17, Math. Assoc. America, Washington, D.C., 1978, pp. 100–141. MR 513004
- [12] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1939 (second printing of the fourth edition: 1978).
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 33A65, 05A15
Retrieve articles in all journals with MSC: 33A65, 05A15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677229-0
Keywords:
Jacobi polynomials,
generating functions,
endofunctions,
arborescences = rooted trees,
Catalan numbers
Article copyright:
© Copyright 1983
American Mathematical Society