Tracial positive linear maps of -algebras
Authors:
Man Duen Choi and Sze Kai Tsui
Journal:
Proc. Amer. Math. Soc. 87 (1983), 57-61
MSC:
Primary 46L05
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677231-9
MathSciNet review:
677231
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A positive linear map between two
-algebras is said to be tracial if
for all
. A tracial positive linear map
is analyzed as the composition of a tracial positive linear map
followed by a positive linear map
.
- [1] William Arveson, Notes on extensions of 𝐶^{*}-algebras, Duke Math. J. 44 (1977), no. 2, 329–355. MR 438137
- [2] Man Duen Choi, A Schwarz inequality for positive linear maps on 𝐶*-algebras, Illinois J. Math. 18 (1974), 565–574. MR 0355615
- [3] Man Duen Choi, Some assorted inequalities for positive linear maps on 𝐶*-algebras, J. Operator Theory 4 (1980), no. 2, 271–285. MR 595415
- [4] -, Positive linear maps, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R. I. (to appear).
- [5] Man Duen Choi and Edward G. Effros, The completely positive lifting problem for 𝐶*-algebras, Ann. of Math. (2) 104 (1976), no. 3, 585–609. MR 417795, https://doi.org/10.2307/1970968
- [6] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, Fascicule XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- [7]
-,
-algebras, North-Holland, Amsterdam, 1977.
- [8] Ronald G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 49. MR 0361893
- [9] L. Terrell Gardner, Linear maps of 𝒞*-algebras preserving the absolute value, Proc. Amer. Math. Soc. 76 (1979), no. 2, 271–278. MR 537087, https://doi.org/10.1090/S0002-9939-1979-0537087-0
- [10] Erling Størmer, Positive linear maps of operator algebras, Acta Math. 110 (1963), 233–278. MR 156216, https://doi.org/10.1007/BF02391860
- [11]
-, Positive linear maps of
-algebras, Lecture Notes in Physics, Vol. 29, Springer-Verlag, Berlin and New York, 1974, pp. 85-106.
- [12] Jørgen Vesterstrøm, Positive linear extension operators for spaces of affine functions, Israel J. Math. 16 (1973), 203–211. MR 343005, https://doi.org/10.1007/BF02757871
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46L05
Retrieve articles in all journals with MSC: 46L05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677231-9
Keywords:
-algebras,
finite von Neumann algebras,
positive linear maps,
traces,
Schwarz inequality,
Toeplitz operators
Article copyright:
© Copyright 1983
American Mathematical Society