On a generalized moment problem
HTML articles powered by AMS MathViewer
- by J. S. Hwang
- Proc. Amer. Math. Soc. 87 (1983), 88-89
- DOI: https://doi.org/10.1090/S0002-9939-1983-0677238-1
- PDF | Request permission
Abstract:
The well-known Müntz-Szász theorem asserts that the sequence of powers ${x^{{n_p}}}$ is complete on $[a,b]$, where $a \geqslant 0$, if and only if (1) \[ (1)\quad \sum \limits _{p = 1}^\infty {\frac {1} {{{n_p}}} = \infty ,\quad {\text {where}}\;0 < {n_1} < {n_2} < \cdots .} \] Let $f(x)$ be absolutely continuous, $\left | {f’(x)} \right | \geqslant k > 0$, and $f(a)f(b) \geqslant 0$. We prove that under the assumption (1) the sequence $\left \{ {f{{(x)}^{{n_p}}}} \right \}$ is complete on $[a,b]$ if and only if $f(x)$ is monotone on $[a,b]$.References
- R. P. Boas Jr., Remarks on a moment problem, Studia Math. 13 (1953), 59–61. MR 58666, DOI 10.4064/sm-13-1-59-61
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627
- Jan G. Mikusiński, Remarks on the moment problem and a theorem of Picone, Colloq. Math. 2 (1951), 138–141. MR 43150, DOI 10.4064/cm-2-2-138-141
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 88-89
- MSC: Primary 44A60
- DOI: https://doi.org/10.1090/S0002-9939-1983-0677238-1
- MathSciNet review: 677238