Entropy for smooth abelian actions
HTML articles powered by AMS MathViewer
- by David Fried
- Proc. Amer. Math. Soc. 87 (1983), 111-116
- DOI: https://doi.org/10.1090/S0002-9939-1983-0677244-7
- PDF | Request permission
Abstract:
We generalize the usual notions of metric and topological entropy for flows to actions of compactly generated abelian Lie groups. Unlike previous generalizations, ours is nontrivial for smooth actions of ${{\mathbf {R}}^n}$, $n \geqslant 2$. We prove some elementary properties of our definitions and we relate them to characteristic exponents and the entropy conjecture.References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI 10.1090/S0002-9947-1965-0175106-9
- Rufus Bowen, Entropy and the fundamental group, The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977) Lecture Notes in Math., vol. 668, Springer, Berlin, 1978, pp. 21–29. MR 518545
- J. P. Conze, Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 11–30 (French). MR 335754, DOI 10.1007/BF00533332
- David Fried and Michael Shub, Entropy, linearity and chain-recurrence, Inst. Hautes Études Sci. Publ. Math. 50 (1979), 203–214. MR 556587
- Yitzhak Katznelson and Benjamin Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), 161–173. MR 316680, DOI 10.1007/BF02764660
- A. A. Kirillov, Dynamical systems, factors and group representations, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 67–80 (Russian). MR 0217256
- MichałMisiurewicz and Feliks Przytycki, Entropy conjecture for tori, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 6, 575–578 (English, with Russian summary). MR 458502
- V. I. Oseledec, A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical systems, Trudy Moskov. Mat. Obšč. 19 (1968), 179–210 (Russian). MR 0240280
- Ja. B. Pesin, Characteristic Ljapunov exponents, and smooth ergodic theory, Uspehi Mat. Nauk 32 (1977), no. 4 (196), 55–112, 287 (Russian). MR 0466791
- David Ruelle, Thermodynamic formalism, Encyclopedia of Mathematics and its Applications, vol. 5, Addison-Wesley Publishing Co., Reading, Mass., 1978. The mathematical structures of classical equilibrium statistical mechanics; With a foreword by Giovanni Gallavotti and Gian-Carlo Rota. MR 511655 M. Shub, Some dynamics of pseudo-Anosov diffeomorphisms, Astérisque 66-67 (1979), 181 -208.
- Jean-Paul Thouvenot, Convergence en moyenne de l’information pour l’action de $\textbf {Z}^{2}$, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 24 (1972), 135–137 (French). MR 321612, DOI 10.1007/BF00532539
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 111-116
- MSC: Primary 54H20; Secondary 28D20, 57S15, 58F11
- DOI: https://doi.org/10.1090/S0002-9939-1983-0677244-7
- MathSciNet review: 677244