Hereditary homotopy equivalences
Author:
Allan J. Sieradski
Journal:
Proc. Amer. Math. Soc. 87 (1983), 149-153
MSC:
Primary 57M20; Secondary 20F05, 55P15, 57M05
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677251-4
MathSciNet review:
677251
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper introduces the notion of hereditary homotopy equivalence which provides a homotopy-theoretic reformulation of the existence of a Cohen-Lyndon basis for a group presentation.
- [1] Ian M. Chiswell, Donald J. Collins, and Johannes Huebschmann, Aspherical group presentations, Math. Z. 178 (1981), no. 1, 1–36. MR 627092, https://doi.org/10.1007/BF01218369
- [2] Peter Hilton, Homotopy theory and duality, Gordon and Breach Science Publishers, New York-London-Paris, 1965. MR 0198466
- [3] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064
- [4] Kurt Reidemeister, Über Identitäten von Relationen, Abh. Math. Sem. Univ. Hamburg 16 (1949), no. nos., nos. 3-4, 114–118 (German). MR 32639, https://doi.org/10.1007/BF03343521
- [5] Allan J. Sieradski, Framed links for Peiffer identities, Math. Z. 175 (1980), no. 2, 125–137. MR 597084, https://doi.org/10.1007/BF01674442
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57M20, 20F05, 55P15, 57M05
Retrieve articles in all journals with MSC: 57M20, 20F05, 55P15, 57M05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1983-0677251-4
Keywords:
Cohen-Lyndon basis,
hereditary homotopy equivalences,
aspherical complexes,
group presentations
Article copyright:
© Copyright 1983
American Mathematical Society