Coefficient bounds for the inverse of a function with derivative in $\mathcal {P}$
HTML articles powered by AMS MathViewer
- by Richard J. Libera and Eligiusz J. Złotkiewicz
- Proc. Amer. Math. Soc. 87 (1983), 251-257
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681830-8
- PDF | Request permission
Abstract:
Coefficient bounds for functions with a positive real part are used in a rather novel way to find sharp bounds for the first six coefficients of a function which is inverse to a regular normalized univalent function whose derivative has a positive real part in the unit disk.References
- Peter L. Duren, Coefficients of univalent functions, Bull. Amer. Math. Soc. 83 (1977), no. 5, 891–911. MR 470182, DOI 10.1090/S0002-9904-1977-14324-3
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039, DOI 10.1090/mmono/026
- Ulf Grenander and Gabor Szegö, Toeplitz forms and their applications, California Monographs in Mathematical Sciences, University of California Press, Berkeley-Los Angeles, 1958. MR 0094840
- D. J. Hallenbeck, Convex hulls and extreme points of some families of univalent functions, Trans. Amer. Math. Soc. 192 (1974), 285–292. MR 338338, DOI 10.1090/S0002-9947-1974-0338338-8
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. MR 232926, DOI 10.1090/S0002-9939-1969-0232926-9
- W. E. Kirwan and G. Schober, Inverse coefficients for functions of bounded boundary rotation, J. Analyse Math. 36 (1979), 167–178 (1980). MR 581809, DOI 10.1007/BF02798776
- Jan G. Krzyż, Richard J. Libera, and Eligiusz Złotkiewicz, Coefficients of inverses of regular starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 33 (1979), 103–110 (1981) (English, with Russian and Polish summaries). MR 689590
- Richard J. Libera and Eligiusz J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230. MR 652447, DOI 10.1090/S0002-9939-1982-0652447-5
- Karl Löwner, Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann. 89 (1923), no. 1-2, 103–121 (German). MR 1512136, DOI 10.1007/BF01448091
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Glenn Schober, Coefficient estimates for inverses of schlicht functions, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 503–513. MR 623495
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 251-257
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681830-8
- MathSciNet review: 681830