$L^{p}$-boundedness of a certain class of multipliers associated with curves on the plane. I
HTML articles powered by AMS MathViewer
- by Alberto Ruiz
- Proc. Amer. Math. Soc. 87 (1983), 271-276
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681833-3
- PDF | Request permission
Abstract:
${L^p}$-unboundedness for $p \ne 2$ is proved in the case of multipliers which are constant along curves. In particular $y = {x^n}$ is included in the range of curves.References
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Antonio Cordoba, The Kakeya maximal function and the spherical summation multipliers, Amer. J. Math. 99 (1977), no. 1, 1–22. MR 447949, DOI 10.2307/2374006
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. MR 320624, DOI 10.1007/BF02771772
- Carlos E. Kenig and Peter A. Tomas, On conjectures of Rivière and Strichartz, Bull. Amer. Math. Soc. (N.S.) 1 (1979), no. 4, 694–697. MR 532556, DOI 10.1090/S0273-0979-1979-14674-3 W. Littman, C. McCarthy and N. M. Riviere, The non-existence of ${L^p}$ estimates for certain translation invariant operators, Studia Math. 30 (1968). N. M. Riviere, Some open question, Harmonic Analysis on Euclidean Spaces. Proc. Sympos. Pure Math., vol. 30, part 1. Amer. Math. Soc., Providence, R.I., 1979. A Ruiz, Multiplicadores asociados a curvas en el plano, Publicaciones del Departamento de Ecuaciones Funcionales, Univ. Complutense de Madrid, 1979-80.
- Per Sjölin, Fourier multipliers and estimates of the Fourier transform of measures carried by smooth curves in $R^{2}$, Studia Math. 51 (1974), 169–182. MR 385437, DOI 10.4064/sm-51-2-169-182
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 271-276
- MSC: Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681833-3
- MathSciNet review: 681833