$L^{p}$-boundedness of a certain class of multipliers associated with curves on the plane. II
HTML articles powered by AMS MathViewer
- by Alberto Ruiz
- Proc. Amer. Math. Soc. 87 (1983), 277-282
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681834-5
- PDF | Request permission
Abstract:
${L^p}$-boundedness of some multiplier, almost constant along curves, is proved. The interval of $p$’s depends on the rate of decaying along the above curves.References
- A. Córdoba, A note on Bochner-Riesz operators, Duke Math. J. 46 (1979), no. 3, 505–511. MR 544242, DOI 10.1215/S0012-7094-79-04625-8 A. Ruiz, Mulliplicadoses asociados a curvas en el plano y teoremas de restriction de la transformada de Fourier a curvas en ${{\mathbf {R}}^2}$ y ${{\mathbf {R}}^3}$, Tesis doctoral, Universidad Complutense de Madrid, 1980.
- Alberto Ruiz, $L^{p}$-boundedness of a certain class of multipliers associated with curves on the plane. I, Proc. Amer. Math. Soc. 87 (1983), no. 2, 271–276. MR 681833, DOI 10.1090/S0002-9939-1983-0681833-3
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 277-282
- MSC: Primary 42B15
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681834-5
- MathSciNet review: 681834