A Radon-Nikodým theorem for natural cones associated with von Neumann algebras. II
HTML articles powered by AMS MathViewer
- by Hideki Kosaki
- Proc. Amer. Math. Soc. 87 (1983), 283-288
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681835-7
- PDF | Request permission
Abstract:
A natural cone associated with a ($\sigma$-finite) von Neumann algebra is considered. Let ${\xi _0}$ be a cyclic and separating vector in the cone. For each vector $\xi$ in the cone, there always exists a positive selfadjoint operator $t$ affiliated with the algebra satisfying $\xi = tJtJ{\xi _0}$. Certain uniqueness results on $t$ for a given $\xi$ are also obtained.References
- Alberto Alonso and Barry Simon, The Birman-Kreĭn-Vishik theory of selfadjoint extensions of semibounded operators, J. Operator Theory 4 (1980), no. 2, 251–270. MR 595414
- Huzihiro Araki, Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule, Pacific J. Math. 50 (1974), 309–354. MR 350437, DOI 10.2140/pjm.1974.50.309
- Alain Connes, Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 4, x, 121–155 (1975) (French, with English summary). MR 377533
- Uffe Haagerup, The standard form of von Neumann algebras, Math. Scand. 37 (1975), no. 2, 271–283. MR 407615, DOI 10.7146/math.scand.a-11606
- Hideki Kosaki, A Radon-Nikodým theorem for natural cones associated with von Neumann algebras, Proc. Amer. Math. Soc. 84 (1982), no. 2, 207–211. MR 637170, DOI 10.1090/S0002-9939-1982-0637170-5
- F. Perdrizet, Éléments positifs relatifs à une algèbre hilbertienne à gauche, Compositio Math. 23 (1971), 25–47 (French). MR 285919
- Michael Reed and Barry Simon, Methods of modern mathematical physics. I, 2nd ed., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980. Functional analysis. MR 751959
- Christian F. Skau, Positive selfadjoint extensions of operators affiliated with a von Neumann algebra, Math. Scand. 44 (1979), no. 1, 171–195. MR 544585, DOI 10.7146/math.scand.a-11801
- M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR 0270168, DOI 10.1007/BFb0065832
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 283-288
- MSC: Primary 46L50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681835-7
- MathSciNet review: 681835