LENGTH OF RAY-IMAGES UNDER CONFORMAL MAPS

V. KARUNAKARAN

Abstract. Let \(w = f(z) \) be regular and univalent in \(|z| < 1\) with \(f(0) = 0 \). Suppose that \(f \) maps the unit disc onto a domain \(D \). Let \(l(r, \theta) \) be the length of the image curve of the ray joining \(z = 0 \) to \(z = re^{i\theta} \) in \(D \) and \(A(r) = \sup \{ |f(re^{i\theta})|^{-1} l(r, \theta) \} \) where the supremum is taken over all starlike functions. In this paper we show that \(A(r) \leq (1 + r) \).

Let \(w = f(z) \) be regular and univalent in \(|z| < 1\) and \(f(0) = 0 \). Suppose that \(f \) maps the unit disc \(\{z: |z| < 1\} \) onto a domain \(D \). Let \(C(r, \theta) \) be the image in \(D \) of the ray joining \(z = 0 \) to \(z = re^{i\theta} \) and let

\[
l(r, \theta) = \int_0^r |f'(ue^{i\theta})| \, du
\]

be its length. Gehring and Hayman [1] proved that if \(D \) is starlike with respect to \(w = 0 \)

\[
l(r, \theta) < k |f(re^{i\theta})|
\]

where \(k \) is an absolute constant. Sheil-Small [4] showed that \(k \) can be taken as \((1 + \log 4)\) and if in addition \(f \) is starlike of order \(1/2 \) then \(k \) can be taken as \((1 + \log 2)\). His conjecture regarding the best possible constants in both these cases has been proved in the affirmative by Hall [2,3]. In the later work Hall poses the problem of finding

\[
A(r, \alpha) = \sup \left\{ |f(re^{i\theta})|^{-1} \int_0^r |f'(ue^{i\theta})| \, du \right\}
\]

where the supremum is taken over all functions \(f \) which are starlike of order \(\alpha \) and \(\theta \) real. In this paper we show that \(A(r, 0) \leq (1 + r) \) and it is likely that this is best possible up to rotations even though I am not able to establish this fact at present.

Theorem. Let \(f \) be starlike of order 0 in the unit disc then

\[
l(r, \theta) = \int_0^r |f'(ue^{i\theta})| \, du \leq (1 + r) |f(re^{i\theta})|.
\]

Proof. Without loss of generality let us suppose \(\theta = 0 \). Since \(f \) is starlike of order 0 we have

\[
H(z) = \frac{zf'(zr)}{f(zr)} = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{1 + zre^{-it}}{1 - zre^{-it}} \, d\theta
\]

Received by the editors December 30, 1980 and, in revised form, March 29, 1982.

1980 Mathematics Subject Classification. Primary 30C45; Secondary 30C35.

Key words and phrases. Starlike, ray-image.

Research supported by a grant from Madurai University.
where \(V(t) \) is increasing, \(V(-\pi) + \pi = V(\pi) - \pi \). Let us put \(h(z) = f(rz) \) so that \(H(z) = zh'(z)/h(z) \). Now we can write

\[
\frac{1}{u} \text{Re} H(u) = \frac{\partial}{\partial u} \log |h(u)| = \int_0^\pi \frac{1 - u^2 r^2}{ur(1 - 2ur \cos t + u^2 r^2)} dW(t)
\]

where \(dW = dV(t) - dV(-t) \) is nonnegative and has total mass 1. We have to show that

\[
\int_0^1 |h'(u)| \, du \leq (1 + r) |h(1)|.
\]

We write

\[
\int_0^1 |h'(u)| \, du = \int_0^1 |H(u)||h(u)| u^{-1} \, du
\]

\[
= \int_0^1 \text{Re} H(u)|h(u)| u^{-1} \, du + \int_0^1 (|H(u)| - \text{Re} H(u))|h(u)| u^{-1} \, du
\]

and observe that the first integral on the right side is \(|h(1)|\) by (2). Further from (1) and (2) we have

\[
|H(u)| - \text{Re} H(u)
\]

\[
\leq \int_0^\pi \left\{ \frac{1 + ur}{\sqrt{(1 + u^2 r^2 - 2ur \cos t)}} - \frac{1 - u^2 r^2}{(1 + u^2 r^2 - 2ur \cos t)} \right\} dW(t)
\]

and (2) gives

\[
\log |h(u)/h(1)| = \int_1^u \frac{\partial}{\partial u} \log |h(u)| \, du
\]

\[
= \int_0^\pi \log \left(\frac{u(1 + r^2 - 2r \cos t)}{(1 + u^2 r^2 - 2ur \cos t)} \right) dW(t)
\]

and so using Jensen’s inequality [5, p. 24] we can get

\[
\left| \frac{h(u)}{u} \right| \leq |h(1)| \int_0^\pi \frac{(1 + r^2 - 2r \cos t)}{(1 + u^2 r^2 - 2ur \cos t)} dW(t).
\]

Hence

\[
\int_0^1 (|H(u)| - \text{Re} H(u))|h(u)| u^{-1} \, du
\]

\[
\leq |h(1)| \int_0^\pi \int_0^\pi I(t, s) \, dW(s) \, dW(t)
\]

\[
\leq \frac{1}{2} |h(1)| \int_0^\pi \int_0^\pi (I(t, s) + I(s, t)) \, dW(s) \, dW(t)
\]

where

\[
I(t, s) = \int_0^1 \left\{ \frac{1 + ur}{\sqrt{(1 + u^2 r^2 - 2ur \cos t)}} - \frac{1 - u^2 r^2}{(1 + u^2 r^2 - 2ur \cos t)} \right\}
\]

\[
\cdot \frac{(1 + r^2 - 2r \cos s)}{(1 + u^2 r^2 - 2ur \cos s)} \, du.
\]
In order to prove (3) it suffices to show
\[\int_0^\pi \int_0^\pi \left(I(t, s) + I(s, t) \right) dW(s) dW(t) < 2r. \]
Since \(dW \) is a probability measure, moreover \(I \) is even in both variables it will be sufficient for our result to show
\[I(s, t) + I(t, s) < 2r \quad \text{for } 0 < s < t < \pi \]
(see [3]). In the above integral in (8) we change \(ur \) as \(u \) and we get
\[I(t, s) = \frac{1}{r} \int_0^r \left\{ \frac{1 + u}{\sqrt{(1 + u^2 - 2u \cos t)}} - \frac{1 - u^2}{(1 + u^2 - 2u \cos t)} \right\} \frac{(1 + r^2 - 2r \cos s)}{(1 + u^2 - 2u \cos s)} \, du. \]
We observe that
\[I(t, s) = \frac{1 + r^2 - 2r \cos s}{r} \left(J(t, s) - K(t, s) \right) \]
where
\[J(t, s) = \int_0^r \frac{(1 + u)}{\sqrt{(1 + u^2 - 2u \cos t)}}(1 + u^2 - 2u \cos s) \, du \]
and
\[K(t, s) = \int_0^r \frac{(1 - u^2)}{(1 + u^2 - 2u \cos t)(1 + u^2 - 2u \cos s)} \, du. \]
We evaluate these integrals. In (11) we change the variable \(u \) to
\[y = \frac{(1 - u)}{\sqrt{(1 + u^2 - 2u \cos t)}} \]
and use \(S = \sin(s/2) \) and \(T = \sin(t/2) \) to get
\[J(t, s) = \frac{1}{2S\sqrt{(T^2 - S^2)}} \left[\arctan(T^2 - S^2/S) - \arctan(\sqrt{(T^2 - S^2)(1 - r)}/S\sqrt{(1 + r^2 - 2r \cos t)}) \right]. \]
Now for simplification purposes we write
\[k = \sqrt{(T^2 - S^2)}/T, \]
\[1 - x^2 = (1 - r)^2/(1 - r)^2 + 4rT^2, \quad 0 < x \leq 2\sqrt{r}/1 + r < 1. \]
The relations (14) imply that
\[(1 - r)^2/(1 - r)^2 + 4rS^2 = (1 - x^2)/(1 - k^2x^2), \]
\[T^2 = (1 - r)^2x^2/4r(1 - x^2), \quad S^2 = (1 - r)^2(1 - k^2)x^2/4r(1 - x^2). \]
The relations (14) and (15) show that
\begin{equation}
1 + r^2 - 2r \cos s \frac{J(t, s)}{r} = \frac{2(1 - k^2x^2)}{kx^2\sqrt{1 - k^2}} \left(\arctan \left(\frac{k}{\sqrt{1 - k^2}} \right) - \arctan \left(\frac{k\sqrt{1 - x^2}}{\sqrt{1 - k^2}} \right) \sqrt{1 - k^2} \right) \\
= \frac{2(1 - k^2x^2)}{x^2(1 - k^2)} \left(\int_0^x \frac{(1 - k^2)t}{(1 - k^2t^2)\sqrt{1 - t^2}} \, dt \right) \\
= \frac{2(1 - k^2x^2)}{x^2(1 - k^2)} \left(\int_0^x \frac{t}{\sqrt{1 - t^2}} \, dt - \sum_{n=1}^{\infty} k^{2n} \int_0^x t^{2n-1} \sqrt{1 - t^2} \, dt \right) \\
K(t, s) = \frac{1}{4(T^2 - S^2)} \log \left(\frac{(1 - r)^2 + 4rT^2}{(1 - r)^2 + 4rS^2} \right)
\end{equation}

and
\begin{equation}
\frac{1 + r^2 - 2r \cos s}{r} K(t, s) = -\frac{(1 - k^2x^2)}{k^2x^2} \log(1 - k^2x^2).
\end{equation}

Interchanging the roles of \(s \) and \(t \) we can also get
\begin{equation}
J(s, t) = \frac{1}{2T\sqrt{(T^2 - S^2)}} \cdot \log \left[\frac{T + \sqrt{T^2 - S^2}}{S} \frac{T - \sqrt{T^2 - S^2}\sqrt{1 - x^2}/\sqrt{1 - k^2x^2}}{\sqrt{T^2 - (T^2 - S^2)(1 - x^2)/1 - k^2x^2}} \right]
\end{equation}

and
\begin{equation}
\frac{1 + r^2 - 2r \cos t}{r} J(s, t) = \frac{2}{kx^2} \log \frac{1 + k}{\sqrt{1 - k^2x^2} + k\sqrt{1 - x^2}} \\
= \frac{2}{x^2} \int_0^x \frac{t}{\sqrt{(1 - t^2)\sqrt{1 - k^2t^2}}} \, dt \\
= \frac{2}{x^2} \sum_{n=0}^{\infty} C_n k^{2n} \int_0^x t^{2n+1} (1 - t^2)^{-1/2} \, dt
\end{equation}

where
\begin{equation}
C_n = \Gamma(n + 1/2)/\Gamma(1/2)\Gamma(n + 1).
\end{equation}

Now \(K(s, t) = K(t, s) \) and so
\begin{equation}
\frac{1 + r^2 - 2r \cos t}{r} K(s, t) = -\frac{1}{k^2x^2} \log(1 - k^2x^2).
\end{equation}
Thus using (16), (17), (18) and (20) we get

\[
I(t, s) + I(s, t) = \frac{2(1 - k^2 x^2)}{(1 - k^2)x^2} \left\{ \int_0^x \frac{t}{\sqrt{1 - t^2}} \, dt - \sum_{n=1}^{\infty} k^{2n} \int_0^x t^{2n-1} \sqrt{1 - t^2} \, dt \right\} + \frac{2}{x^2} \sum_{n=0}^{\infty} C_n k^{2n} \int_0^x \frac{t^{2n+1}}{\sqrt{1 - t^2}} \, dt + \left(\frac{2 - k^2 x^2}{k^2 x^2} \right) \log \left(1 - k^2 x^2 \right).
\]

If we write \(I(t, s) + I(s, t)\) as a power series in \(k\) of the form \(\sum_{n=0}^{\infty} \Phi_n(x) k^{2n}\) we find after some work that

\[
\Phi_n(x) = -2 \int_0^x \frac{t^{2n-1}}{\sqrt{1 - t^2}} \, dt + \frac{2}{x^2} \sum_{n=0}^{\infty} C_n \int_0^x \frac{t^{2n+1}}{\sqrt{1 - t^2}} \, dt - \frac{2 x^{2n}}{n + 1} + \frac{x^{2n}}{n}.
\]

Expanding \(\Phi_n(x)\) also in a power series we find that

\[
\Phi_n(x) = \sum_{j=0}^{\infty} C_j \left[\frac{1 + C_n}{j + n + 1} - \frac{1}{j + n} \right] x^{2j+2n} - \frac{2 x^{2n}}{n + 1} + \frac{x^{2n}}{n}.
\]

From (23) it is clear that \(\Phi_n(0) = 0\) and that the coefficient of \(x^{2j+2n}\) \((j \geq 1)\) is \(((n + j)C_n - 1)C_j\). Now

\[
((n + j)C_n - 1)C_j \geq ((n + 1)C_n - 1)C_j
\]

and \((n + 1)C_n\) can be shown by induction to be greater than or equal to 1 using (19). Hence the coefficients are positive and in particular \(\Phi_n(x)\) has at most one stationary value which in this case must be a minimum. Hence

\[
\Phi_n(x) \leq \text{Max}(\Phi_n(0), \Phi_n(x_0))
\]

where \(x_0\) is the maximum possible value for \(x\) namely \(x_0 = 2\sqrt{r/(1 + r)}\). However

\[
\Phi_n(x_0) \leq \text{Max}(\Phi_n(0), \Phi_n(1))
\]

since \(x_0\) may be less or greater than the value of \(x\) at which \(\Phi_n(x)\) is minimum. But from (22)

\[
\Phi_n(1) = -\frac{\Gamma(n)\Gamma(1/2)}{\Gamma(n + 1/2)} + \frac{n\Gamma(n)\Gamma(1/2)}{(n + (1/2))(n + (1/2))} + \frac{2}{2n + 1} - \frac{2}{n + 1} + \frac{1}{n}
\]

\[
= \frac{1}{2n + 1} \left\{ 2 - \frac{\Gamma(n)\Gamma(1/2)}{\Gamma(n + (1/2))} \right\} - \frac{2}{n + 1} + \frac{1}{n}.
\]

Since \((n + 1/4)\Gamma^2(n + 1/2)/\Gamma^2(n + 1)\) increases to 1 we have

\[
\Gamma(n + 1/2)/\Gamma(n + 1) \leq 2/\sqrt{(1 + 4n)}.
\]

Using (24) and the fact that \(\pi > 2\) one can easily show that \(\Phi_n(1) < 0\) for \(n \geq 5\). For \(n < 5\) one can check this inequality directly. Hence \(\Phi_n(x) < 0\). For all \(n \geq 1\). Thus we get

\[
I(s, t) + I(t, s) \leq \Phi_0(x) = \frac{4}{x^2} - 4 \sqrt{(1 - x^2)} - 2.
\]
Now
\[\frac{d}{dx} (\Phi_0(x)) = \frac{-8}{x^3} + \frac{4(2 - x^2)}{x^3 \sqrt{1 - x^2}} > 0. \]

Hence \(\Phi_0(x) \) increases and has a maximum at \(x = x_0 \). Thus
\[(26) \quad \Phi_0(x) = \Phi_0(x_0) = 2r. \]

We use (26) in (25) and conclude from (7) that
\[(27) \quad \int_0^1 \left[|H(u)| - \Re H(u) \right] \frac{h(u)}{u} \, du \leq r \, |h(1)| \]

and as already observed
\[(28) \quad \int_0^1 \Re H(u) |h(u)| u^{-1} \, du = |h(1)|. \]

Now (27) and (28) and (4) gives (3). Hence the result.

REFERENCES
2. R. R. Hall, The length of ray images under starlike mappings, Mathematika 23 (1976), 147–150.

School of Mathematics, Madurai University, Madurai-625021, India