Length of ray-images under conformal maps
HTML articles powered by AMS MathViewer
- by V. Karunakaran
- Proc. Amer. Math. Soc. 87 (1983), 289-294
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681836-9
- PDF | Request permission
Abstract:
Let $w = f(z)$ be regular and univalent in $|z| < 1$ with $f(0) = 0$. Suppose that $f$ maps the unit disc onto a domain $D$. Let $l(r,\theta )$ be the length of the image curve of the ray joining $z = 0$ to $z = r{e^{i\theta }}$ in $D$ and $A(r) = \operatorname {Sup}[{\left | {f(r{e^{i\theta }})} \right |^{ - 1}}l(r,\theta )]$ where the supremum is taken over all starlike functions. In this paper we show that $A(r) \leqslant (1 + r)$.References
- F. W. Gehring and W. K. Hayman, An inequality in the theory of conformal mapping, J. Math. Pures Appl. (9) 41 (1962), 353–361. MR 148884
- R. R. Hall, The length of ray-images under starlike mappings, Mathematika 23 (1976), no. 2, 147–150. MR 427611, DOI 10.1112/S0025579300008743
- R. R. Hall, A conformal mapping inequality for starlike functions of order ${1\over 2}$, Bull. London Math. Soc. 12 (1980), no. 2, 119–126. MR 571733, DOI 10.1112/blms/12.2.119
- T. Sheil-Small, Some conformal mapping inequalities for starlike and convex functions, J. London Math. Soc. (2) 1 (1969), 577–587. MR 249599, DOI 10.1112/jlms/s2-1.1.577
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 289-294
- MSC: Primary 30C45; Secondary 30C35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681836-9
- MathSciNet review: 681836