Rigid finite-dimensional compacta whose squares are manifolds
HTML articles powered by AMS MathViewer
- by Fredric D. Ancel and S. Singh
- Proc. Amer. Math. Soc. 87 (1983), 342-346
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681845-X
- PDF | Request permission
Abstract:
A space is rigid if its only self-homeomorphism is the identity. We answer questions of Jan van Mill by constructing for each $n$, $4 \leqslant n < \infty$, a rigid $n$-dimensional compactum whose square is homogeneous because it is a manifold. Moreover, for each $n$, $4 \leqslant n < \infty$, we give uncountably many topologically distinct such examples. Infinite-dimensional examples are also given.References
- A. V. Arhangel′skiĭ, The structure and classification of topological spaces and cardinal invariants, Uspekhi Mat. Nauk 33 (1978), no. 6(204), 29–84, 272 (Russian). MR 526012
- Charles D. Bass, Some products of topological spaces which are manifolds, Proc. Amer. Math. Soc. 81 (1981), no. 4, 641–646. MR 601746, DOI 10.1090/S0002-9939-1981-0601746-0
- R. J. Daverman and S. Singh, Arcs in the Hilbert cube $(S^{n})$ whose complements have different fundamental groups, Compositio Math. 48 (1983), no. 2, 209–222. MR 700004
- Michel A. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67–72. MR 253347, DOI 10.1090/S0002-9947-1969-0253347-3
- R. C. Lacher, Cell-like mappings and their generalizations, Bull. Amer. Math. Soc. 83 (1977), no. 4, 495–552. MR 645403, DOI 10.1090/S0002-9904-1977-14321-8
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- Barry Mazur, A note on some contractible $4$-manifolds, Ann. of Math. (2) 73 (1961), 221–228. MR 125574, DOI 10.2307/1970288 L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than five, Ph.D. thesis, Princeton University, 1965.
- Stephen Smale, Generalized Poincaré’s conjecture in dimensions greater than four, Ann. of Math. (2) 74 (1961), 391–406. MR 137124, DOI 10.2307/1970239
- H. Toruńczyk, On $\textrm {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds, Fund. Math. 106 (1980), no. 1, 31–40. MR 585543, DOI 10.4064/fm-106-1-31-40
- Jan van Mill, A rigid space $X$ for which $X\times X$ is homogeneous; an application of infinite-dimensional topology, Proc. Amer. Math. Soc. 83 (1981), no. 3, 597–600. MR 627701, DOI 10.1090/S0002-9939-1981-0627701-2
- R. L. Wilder, Monotone mappings of manifolds, Pacific J. Math. 7 (1957), 1519–1528. MR 92966, DOI 10.2140/pjm.1957.7.1519
- E. C. Zeeman, On the dunce hat, Topology 2 (1964), 341–358. MR 156351, DOI 10.1016/0040-9383(63)90014-4
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 342-346
- MSC: Primary 54G20; Secondary 55M15, 57P99
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681845-X
- MathSciNet review: 681845