Concerning exactly $(n, 1)$ images of continua
HTML articles powered by AMS MathViewer
- by Sam B. Nadler and L. E. Ward
- Proc. Amer. Math. Soc. 87 (1983), 351-354
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681847-3
- PDF | Request permission
Abstract:
A surjective mapping $f:X \to Y$ is exactly $(n,1)$ if ${f^{ - 1}}(y)$ contains exactly $n$ points for each $y \in Y$. We show that if $Y$ is a continuum such that each nondegenerate subcontinuum of $Y$ has an endpoint, and if $2 \leqslant n < \infty$, then there is no exactly $(n,1)$ mapping from any continuum onto $Y$. However, if $Y$ is a continuum which contains a nonunicoherent subcontinuum, then such an $(n,1)$ mapping exists. Therefore, a Peano continuum is a dendrite if and only if for each $n$ $(2 \leqslant n < \infty )$ there is no exactly $(n,1)$ mapping from any continuum onto $Y$. We also show that for each positive integer $n$ there is an exactly $(n,1)$ mapping from the Hilbert cube onto itself.References
- Karol Borsuk and R. Molski, On a class of continuous mappings, Fund. Math. 45 (1957), 84–98. MR 102063, DOI 10.4064/fm-45-1-84-98
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357, DOI 10.1090/cbms/028
- Paul Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49–57. MR 8697
- Paul W. Gilbert, $n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475–486. MR 7106
- O. G. Harrold Jr., The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789–793. MR 1358
- O. G. Harrold Jr., Exactly $(k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823–834. MR 2554, DOI 10.2307/2371492
- O. G. Harrold Jr., Continua of finite sections, Duke Math. J. 8 (1941), 682–688. MR 5336
- Venable Martin and J. H. Roberts, Two-to-one transformations on 2-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1–17. MR 4129, DOI 10.1090/S0002-9947-1941-0004129-9
- J. Mioduszewski, On two-to-one continuous functions, Rozprawy Mat. 24 (1961), 43. MR 145490
- J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256–262. MR 1923, DOI 10.1215/S0012-7094-40-00620-2
- Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, Vol. 28, American Mathematical Society, New York, 1942. MR 0007095, DOI 10.1090/coll/028
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 351-354
- MSC: Primary 54F20; Secondary 54F50
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681847-3
- MathSciNet review: 681847