On the relative de Rham sequence
HTML articles powered by AMS MathViewer
- by N. Buchdahl
- Proc. Amer. Math. Soc. 87 (1983), 363-366
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681850-3
- PDF | Request permission
Abstract:
The classical de Rham sequence on a (smooth, paracompact) manifold provides a connection between solutions of certain differential equations and the topology of the manifold. This paper shows how the relative de Rham sequence for a mapping between manifolds gives a connection between solutions of differential equations and the topology of the fibres of the mapping.References
- Michael G. Eastwood, Roger Penrose, and R. O. Wells Jr., Cohomology and massless fields, Comm. Math. Phys. 78 (1980/81), no. 3, 305–351. MR 603497 L. Hörmander, An introduction of complex analysis in several variables, North-Holland, Amsterdam and London, 1973.
- André Weil, Sur les théorèmes de de Rham, Comment. Math. Helv. 26 (1952), 119–145 (French). MR 50280, DOI 10.1007/BF02564296
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 363-366
- MSC: Primary 58A10; Secondary 32L10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0681850-3
- MathSciNet review: 681850