THE OCTIC PERIOD POLYNOMIAL

RONALD J. EVANS

Abstract. The coefficients and the discriminant of the octic period polynomial \(\psi_8(z) \) are computed, where, for a prime \(p = 8f + 1 \), \(\psi_8(z) \) denotes the minimal polynomial over \(\mathbb{Q} \) of the period \((1/8) \sum_{n=1}^{p-1} \exp(2\pi in^8/p) \). Also, the finite set of prime octic nonresidues (mod \(p \)) which divide integers represented by \(\psi_8(z) \) is characterized.

1. Introduction. In this paper we extend certain results of E. Lehmer in [7]. Let \(p = 8f + 1 \) be prime, and define the Gauss sum \(G_e \) of order \(e \) by
\[
G_e = \sum_{n=1}^{p-1} \exp(2\pi in^e/p).
\]
Let \(F_e(z) \) denote the minimal polynomial of \(G_e \) over \(\mathbb{Q} \), so that \(F_e(z) \) has degree \(e \). Let \(\psi_e(z) \) denote the minimal polynomial over \(\mathbb{Q} \) of the Gauss period \(\eta_0 = (G_e - 1)/e \). Then \(\psi_e(z) \), the period polynomial of order \(e \), equals
\[
\psi_e(z) = e^{-e}F_e(ez + 1).
\]
Explicit determinations of the coefficients of \(F_e(z) \) have been made for all \(e \leq 6 \); see [2] for references, and also [5] for \(e = 6 \).

In §2, we determine the coefficients of \(F_8(z) \), and hence of \(\psi_8(z) \), in terms of \(p, C, \) and \(X \), where
\[
\text{(1)} \quad p = 8f + 1 = X^2 + Y^2 = C^2 + 2D^2, \quad C \equiv X \equiv 1 \quad \text{(mod 4)}.
\]
The discriminant of \(\psi_8(z) \) is computed in §3. A theorem of Kummer [7, p. 436; 4, p. 197] shows that the set \(E_p \) of odd prime \(e \)th power nonresidues (mod \(p \)) which divide integers represented by \(\psi_e(z) \) is a subset of the set of divisors of the discriminant of \(\psi_e(z) \). (A generalization of Kummer's theorem, in which \(p \) is replaced by any composite \(n > 0 \), is proved in [3].) In §4, we prove that for \(e = 8 \), \(E_p \) consists precisely of the odd prime nonoctic quartic residues (mod \(p \)) which divide \(DY \). A characterization of \(E_p \) for \(e = 4 \) was known to Sylvester [9, p. 392]. It is given in the Appendix. Further results of this type are proved in [3, §§3–5].

We will generally merely sketch proofs, omitting a number of lengthy calculations. The formulas for the discriminant and coefficients of the period polynomial have been double-checked by computer for primes \(p = 8f + 1 < 200 \).

Received by the editors March 6, 1982.

1980 Mathematics Subject Classification. Primary 10G05; Secondary 10A15.

Key words and phrases. Octic period polynomial.

Author has NSF grant MCS-8101860.
We are indebted to E. Lehmer for many helpful comments. Also, the counsel of J. Sutton has been helpful.

2. Determination of $F_8(z)$. Define

\[E = (-1)^\ell \]

and

\[N = 1 \text{ or } -1, \text{ according as } 2 \text{ is quartic or not (mod } p). \]

A special case of the following theorem is given in [7, (33)].

Theorem 1. In the notation of (1)–(3),

\[
F_8(z) = z^8 + 4p(-3 - 4E)z^6 - 16p(A_1 - 2A_3)z^5
\]

\[
+ 2p\left(A_0 + 2pA_1^2 - 8A_2^2 + 16A_4 \right)z^4
\]

\[
- 32p(pA_1A_2 + A_4A_5 + A_3)z^3 + 4p\left(pA_0A_2 + 8A_3A_5 + 16pA_1^2 - 4A_4^2 \right)z^2
\]

\[
- 16p(pA_0A_1 - 2A_3A_4)z + p(pA_0^2 - 16A_3^2),
\]

where

\[
A_0 = p(9 - 24E + 16N) - 16XC(1 + E - N) + 4X^2 + 8C^2,
\]

\[
A_1 = X(1 - 2N) + 2C(E - N),
\]

\[
A_2 = 1 - 4E,
\]

\[
A_3 = 2pC(2 - 3E + 2N) - pX(1 + 4E - 4N) - 2XC^2,
\]

\[
A_4 = p(1 + 4E - 4N) - 4NCX,
\]

\[
A_5 = X + 2EC.
\]

Proof. Define

\[
S = \sqrt{p}, \quad R = \sqrt{2p - 2SX}, \quad R_1 = \sqrt{2p + 2SX},
\]

\[
U = 2E(S - C)(2S + ENR), \quad U_1 = 2E(S + C)(2S - ENR),
\]

\[
V = 2E(S - C)(2S - ENR), \quad V_1 = 2E(S + C)(2S + ENR).
\]

It follows from [1, Theorem 3.18] and Galois theory that the eight conjugates of G_8 over Q, i.e., the eight zeros of $F_8(z)$, are given by

\[
S + R \pm \sqrt{U}, \quad S - R \pm \sqrt{V},
\]

\[
-S + R_1 \pm \sqrt{U_1}, \quad -S - R_1 \pm \sqrt{V_1}.
\]

The four numbers in (4) are the conjugates of G_8 over $Q(S)$. From (4), one easily finds the quartic irreducible polynomial $E_S(z)$ of $G_8 - S$ over $Q(S)$. Then $F_8(z)$ can be computed by the formula $F_8(z) = E_S(z - S)E_{-S}(z + S)$. In this way, calculations with the numbers in (5) can be avoided.
3. The discriminant of $\psi_8(z)$. In the notation of (1)–(3), define

\begin{equation}
J = (4N - 2)CX - C^2 - X^2 + 4p(1 + N - 2E) + 4DY(2N - E - 1)
\end{equation}

and

\begin{equation}
K = 2Y(3D^2 + 2pE - 2pN) + 4D(2pE - 2pN - p + CX),
\end{equation}

where the choices of Y and D in (6) must be the same as those in (7).

Theorem 2. The discriminant Δ of $\psi_8(z)$ is $\Delta = B_2^2B_3^2B_4^2p^7$, where

\begin{align*}
B_4 &= 2^{-8}Y^2D^4, \\
B_3 &= 2^{-16}(pJ^2 - K^2), \\
B_2 &= 2^{-12}Y^2((2p - 2pE - D^2)^2 - p(X + C - 2EC)^2),
\end{align*}

and B_1 is obtained from B_3 by replacing Y by $-Y$ (or, equivalently, D by $-D$).

Proof. The eight zeros of $\psi_8(z)$ are the periods

$$
\eta_k = \sum_{v=1}^{7} \exp(2\pi ig^{8v+k}/p) \quad (k = 0, 1, \ldots, 7),
$$

where g is a primitive root of p. Thus $\Delta = P_2^2P_3^2P_4^2$ where $P_r = \prod_{k=0}^{7}(\eta_k - \eta_{r+k})$.

It remains to prove that

\begin{equation}
P_r = PB_r \quad (r = 1, 2, 3, 4).
\end{equation}

It is easy to verify (8) for $r = 2, 4$ with use of (4). Suppose that $r = 1$ or 3. One can compute $\eta_0 - \eta_r$ from (4) and (5). Then P_r, the norm of $\eta_0 - \eta_r$ from $Q(\eta_0)$ to Q, can be found by successively computing the norm first down to $Q(R)$, then down to $Q(S)$, and then down to Q. The computations are facilitated by use of the formula

$$4\sqrt{U_i}\sqrt{U_i'} = 2D(R - R_1 + 2ENS).$$

4. Prime factors of $\psi_8(n)$. Let G_p denote the infinite set of odd primes which divide $\psi_8(n)$ for some n. Let E_p denote the set of octic nonresidues (mod p) in G_p. The set E_p is finite; indeed, Kummer showed that E_p is contained in the set of divisors of Δ. The following theorem characterizes E_p.

Theorem 3. E_p equals the set of odd prime nonoctic quartic residues (mod p) which divide DY.

Proof. Let $q \in E_p$. By Kummer's theorem [7, p. 436], either

\begin{equation}
q \text{ is quartic and } q \mid P_4,
\end{equation}

or

\begin{equation}
q \text{ is quadratic and } q \mid (\eta_0 - \eta_2)(\eta_1 - \eta_3) \text{ in } \Omega,
\end{equation}

where Ω is the ring of algebraic integers. By (8) and Theorem 2, $q \mid DY$ when (9) holds. Thus suppose that (10) holds. We will show that $q \mid Y$; it will then also follow that q is quartic, since every odd prime factor of Y is quartic by the law of biquadratic reciprocity [8, p. 77].
By [7, (3)], we have

\[(11) \quad (\eta_0 - \eta_2)(\eta_1 - \eta_3) = \sum_{k=0}^{7} C_k \eta_k,\]

where \(C_k = (1, k) + (1, k - 2) - (3, k) - (1, k - 1),\) and the \((i, j)\) denote cyclotomic numbers \((\text{mod } p)\) of order 8. From the table of values of the \((i, j)\) given in [6, pp. 116–117], we see that

\[(12) \quad C_3 + C_4 = \pm Y/4.\]

By (10) and (11), \(q \mid C_k\) for each \(k.\) Hence \(q \mid Y\) by (12).

Conversely, suppose that \(q\) is an odd prime quartic nonoctic residue \((\text{mod } p)\) which divides \(D\). Since \(P_4 = p2^{-8}Y^2D^4, q \mid P_4.\) Let \(\mathcal{O}\) denote the ring of integers of \(Q(\eta_0),\) and let \(N(\alpha)\) denote the norm of \(\alpha\) from \(Q(\eta_0)\) to \(Q.\) Since \(q \mid P_4,\) we have \(q \mid N(\eta_0 - \eta_4),\) so \(\eta_0 \equiv \eta_4 \pmod{Q}\) for some prime ideal \(Q\) of \(\mathcal{O}\) dividing \(q\mathcal{O}.\) Since \(q\) is quartic but not octic,

\[\eta_0^q = \left(\sum_{v=1}^{f} \exp(2\pi ig^{v^2}/p)\right)^q = \sum_{v=1}^{f} \exp(2\pi ig^{v^2+4}/p) = \eta_4 \pmod{q}.\]

Thus \(\eta_0^q = \eta_0 \pmod{Q}.\) The polynomial \(x^q - x\) equals \(\prod_{j=0}^{q-1} (x - j) \pmod{q},\) so

\[0 \equiv N(\eta_0^q - \eta_0) \equiv \prod_{j=0}^{q-1} N(\eta_0 - j) = \prod_{j=0}^{q-1} \psi_q(j) \pmod{q}.\]

Thus \(q \mid \psi_q(j)\) for some \(j,\) so \(q \in E_p.\)

Example. For \(p = 193, q = 3,\) we have \(q \mid Y, q \mid F_8(0),\) and \(q \in E_p.\) For \(p = 1193, q = 11,\) we have \(q \mid D, q \mid F_8(0),\) and \(q \in E_p.\)

Appendix. Sylvester [9, p. 392] characterized \(E_p\) for \(e = 4\) as follows. Write \(p = A^2 + B^2\) with \(A \equiv 1 \pmod{4}.\)

If \(p = 8k + 1,\) then \(E_p\) is empty; if \(p = 8k + 5,\) then \(E_p\) is the set of primes \(\equiv 3 \pmod{4}\) which divide \(B.\)

Since Sylvester's proof [10] is erroneous, we sketch a proof below.

Suppose that \(p = 8k + 1.\) From the well-known formula for \(\eta_0 = (G_4 - 1)/4\) [1, Theorem 3.11], it is easily seen that the discriminant of the period polynomial \(\psi_4(z)\) is \(\Delta = 2^{-10}p^3B^6.\) Suppose \(q \in E_p.\) By Kummer's theorem [7, p. 436], \(q \mid \Delta,\) so \(q \mid B.\) By the law of biquadratic reciprocity [8, p. 77], every odd prime factor of \(B\) is quartic \((\text{mod } p),\) so \(q \not\in E_p.\) Thus \(E_p\) is empty.

Finally, suppose that \(p = 8k + 5.\) Let \(q\) be a prime divisor of \(B\) with \(q \equiv 3 \pmod{4}\). Then \(q\) is not quartic, by the biquadratic reciprocity law. Furthermore, the formula for \(\eta_0 [1, Theorem 3.11]\) can be used to show easily that \(B \mid F_8(-A),\) so \(q \mid \psi_4(n)\) for some integer \(n.\) Thus \(q \in E_p.\) Conversely, suppose that \(q\) is any odd prime in \(E_p.\) By Kummer's theorem, \(q \mid P_2.\) Since \(P_2 = pB^2/4, q \mid B.\) If \(q \equiv 1 \pmod{4},\) then \(q\) would be quartic by the law of biquadratic reciprocity, which contradicts \(q \in E_p.\) Thus \(q \equiv 3 \pmod{4}.\)
The octic period polynomial

REFERENCES

Department of Mathematics, University of California, San Diego, La Jolla, California 92093