On extreme points of subordination families
HTML articles powered by AMS MathViewer
- by Yusuf Abu-Muhanna
- Proc. Amer. Math. Soc. 87 (1983), 439-443
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684634-5
- PDF | Request permission
Abstract:
Let $F$ be the set of analytic functions in $U = \{ z:|z| < 1\}$ subordinate to a univalent function $f$. Let $D = f(U)$. For $g(z) = f(\phi (z)) \in F$, let $\lambda (\theta )$ denote the distance between $g({e^{i\theta }})$ and $\partial D$ (boundary of $D$). We obtain the following results. (1) If $f’$ is Nevanlinna then $\int _0^{2\pi } {\log \lambda (\theta )d\theta = - \infty }$ if and only if \[ \int _0^{2\pi } {\log \left ( {1 - |\phi ({e^{i\theta }})|} \right )d\theta = - \infty } .\] (2) If $g$ is an extreme point of the closed convex hull of $F$ then \[ \int _0^{2\pi } {\log \left ( {1 - |\phi ({e^{i\theta }})|} \right )d\theta = - \infty } ,\] for the case when $D$ is a Jordan domain subset to a half-plane and $f’$ is Nevanlinna.References
- Yusuf Abu-Muhanna and Thomas H. MacGregor, Extreme points of families of analytic functions subordinate to convex mappings, Math. Z. 176 (1981), no. 4, 511–519. MR 611640, DOI 10.1007/BF01214761
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- P. J. Eenigenburg and F. R. Keogh, The Hardy class of some univalent functions and their derivatives, Michigan Math. J. 17 (1970), 335–346. MR 306505, DOI 10.1307/mmj/1029000519
- D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme-point theory, Pacific J. Math. 50 (1974), 455–468. MR 361035, DOI 10.2140/pjm.1974.50.455
- Hugh M. Hilden, A characterization of the extreme points of some convex sets of analytic functions, Duke Math. J. 37 (1970), 715–723. MR 271737
- John G. Milcetich, On the extreme points of some sets of analytic functions, Proc. Amer. Math. Soc. 45 (1974), 223–228. MR 352470, DOI 10.1090/S0002-9939-1974-0352470-X M. H. Neuman, Elements of the topology of plane sets of points, Cambridge Univ. Press, Cambridge. 1964.
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 439-443
- MSC: Primary 30C80
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684634-5
- MathSciNet review: 684634