The extension of measurable functions
HTML articles powered by AMS MathViewer
- by R. M. Shortt
- Proc. Amer. Math. Soc. 87 (1983), 444-446
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684635-7
- PDF | Request permission
Abstract:
Say a measurable space $(Y,\mathcal {B})$ has the extension property (resp. the extension property in the restricted sense) if for every measurable space $(X,\mathcal {S})$ and every subset $A$ of $X$ (resp. subset $A$ of $X$ with $X\backslash A$ singleton), each function $f:A \to Y$ measurable for $\mathcal {S}(A) = \{ B \cap A:B \in \mathcal {S}\}$ may be extended to a measurable function $g:X \to Y$. A countably generated and separated $(Y,\mathcal {B})$ has the extension property if and only if it is a standard space, i.e. it is isomorphic to a Borel subset of the real line. The discrete space $(Y,{2^Y})$ has the extension property in the restricted sense if and only if the cardinality of $Y$ is not two-valued measurable.References
- G. von Alexits, Über die Erweiterung einer Baireschen Funktion, Fund. Math. 15 (1930), 51-56.
- Donald L. Cohn, Measure theory, Birkhäuser, Boston, Mass., 1980. MR 578344
- H. J. Keisler and A. Tarski, From accessible to inaccessible cardinals. Results holding for all accessible cardinal numbers and the problem of their extension to inaccessible ones, Fund. Math. 53 (1963/64), 225–308. MR 166107, DOI 10.4064/fm-53-3-225-308
- E. L. Lehmann, Testing statistical hypotheses, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1959. MR 0107933 E. Marczewski (Szpilrajn), The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938), 207-223.
- E. Marczewski and R. Sikorski, Measures in non-separable metric spaces, Colloq. Math. 1 (1948), 133–139. MR 25548, DOI 10.4064/cm-1-2-133-139
- Dana Scott, Measurable cardinals and constructible sets, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 9 (1961), 521–524. MR 143710 W. Sierpiński, Sur l’extension des fonctions de Baire définies sur les ensembles linéaires quelconques, Fund. Math. 16 (1930), 31. S. Ulam, Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16 (1930), 140-150.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 444-446
- MSC: Primary 28A05; Secondary 28A20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684635-7
- MathSciNet review: 684635