A note on weighted norm inequalities for the Hardy-Littlewood maximal operator
HTML articles powered by AMS MathViewer
- by Michael Christ and Robert Fefferman
- Proc. Amer. Math. Soc. 87 (1983), 447-448
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684636-9
- PDF | Request permission
Abstract:
In this note we give an extremely simple proof of the weight norm inequalities for the Hardy-Littlewood maximal operator in ${{\mathbf {R}}^n}$.References
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11 R. Hunt, D. Kurtz and C. Neugebauer, A note on the equivalence of ${A_p}$ and Sawyer’s condition for equal weights (to appear). M. Christ, Weighted norm inequalities and Schur’s lemma (preprint).
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 447-448
- MSC: Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684636-9
- MathSciNet review: 684636