Divergent Jacobi polynomial series
HTML articles powered by AMS MathViewer
- by Christopher Meaney
- Proc. Amer. Math. Soc. 87 (1983), 459-462
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684639-4
- PDF | Request permission
Abstract:
Fix real numbers $\alpha \geqslant \beta \geqslant - \tfrac {1}{2}$, with $\alpha > - \tfrac {1}{2}$, and equip $[ - 1,1]$ with the measure $d\mu (x) = {(1 - x)^\alpha }{(1 + x)^\beta }dx$. For $p = 4(\alpha + 1)/(2\alpha + 3)$ there exists $f \in {L^p}(\mu )$ such that $f(x) = 0$ a.e. on $[ - 1,0]$ and the appropriate Jacobi polynomial series for $f$ diverges a.e. on $[ - 1,1]$. This implies failure of localization for spherical harmonic expansions of elements of ${L^{2d/(d + 1)}}(X)$, where $X$ is a sphere or projective space of dimension $d > 1$.References
- Richard Askey, Jacobi polynomial expansions with positive coefficients and imbeddings of projective spaces, Bull. Amer. Math. Soc. 74 (1968), 301–304. MR 220987, DOI 10.1090/S0002-9904-1968-11931-7
- R. Askey and N. H. Bingham, Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1976/77), no. 2, 127–143. MR 423000, DOI 10.1007/BF00536776
- V. M. Badkov, Approximate properties of Fourier series in orthogonal polynomials, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 51–106, 255 (Russian). MR 510670
- S. Chanillo, On the weak behaviour of partial sums of Legendre series, Trans. Amer. Math. Soc. 268 (1981), no. 2, 367–376. MR 632534, DOI 10.1090/S0002-9947-1981-0632534-1
- B. Dreseler and P. M. Soardi, A Cohen-type inequality for Jacobi expansions and divergence of Fourier series on compact symmetric spaces, J. Approx. Theory 35 (1982), no. 3, 214–221. MR 663667, DOI 10.1016/0021-9045(82)90003-X
- Sigurđur Helgason, The Radon transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta Math. 113 (1965), 153–180. MR 172311, DOI 10.1007/BF02391776
- Carlos E. Kenig and Peter A. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), no. 1, 48–50. MR 548082, DOI 10.1090/S0002-9939-1980-0548082-8 C. Meaney, Localization and uniqueness of spherical harmonic expansions, Ph.D. dissertation, Dept. Math., Univ. of Washington, Seattle, 1979.
- Benjamin Muckenhoupt, Mean convergence of Jacobi series, Proc. Amer. Math. Soc. 23 (1969), 306–310. MR 247360, DOI 10.1090/S0002-9939-1969-0247360-5
- Jerome Newman and Walter Rudin, Mean convergence of orthogonal series, Proc. Amer. Math. Soc. 3 (1952), 219–222. MR 47811, DOI 10.1090/S0002-9939-1952-0047811-2
- Harry Pollard, The convergence almost everywhere of Legendre series, Proc. Amer. Math. Soc. 35 (1972), 442–444. MR 302973, DOI 10.1090/S0002-9939-1972-0302973-7
- Robert J. Stanton and Peter A. Tomas, Polyhedral summability of Fourier series on compact Lie groups, Amer. J. Math. 100 (1978), no. 3, 477–493. MR 622197, DOI 10.2307/2373834 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1969.
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 459-462
- MSC: Primary 42C10; Secondary 43A25, 58G25
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684639-4
- MathSciNet review: 684639