Nonoscillation theorems for a second order sublinear ordinary differential equation
HTML articles powered by AMS MathViewer
- by Man Kam Kwong and J. S. W. Wong
- Proc. Amer. Math. Soc. 87 (1983), 467-474
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684641-2
- PDF | Request permission
Abstract:
A number of known and a conjectured nonoscillation criteria for sublinear Emden-Fowler equations are shown to be equivalent. One of these criteria is then extended to cover cases in which a growth condition on the coefficient of the equation is not satisfied.References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316
- C. V. Coffman and D. F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71 (1967), 385–392. MR 227494, DOI 10.1007/BF01295129
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations, Trans. Amer. Math. Soc. 167 (1972), 399–434. MR 296413, DOI 10.1090/S0002-9947-1972-0296413-9
- C. V. Coffman and J. S. W. Wong, Oscillation and nonoscillation theorems for second order ordinary differential equations, Funkcial. Ekvac. 15 (1972), 119–130. MR 333337
- H. E. Gollwitzer, Nonoscillation theorems for a nonlinear differential equation, Proc. Amer. Math. Soc. 26 (1970), 78–84. MR 259243, DOI 10.1090/S0002-9939-1970-0259243-3
- J. W. Heidel, A nonoscillation theorem for a nonlinear second order differential equation, Proc. Amer. Math. Soc. 22 (1969), 485–488. MR 248396, DOI 10.1090/S0002-9939-1969-0248396-0
- Wolfgang Walter, Differential and integral inequalities, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. Translated from the German by Lisa Rosenblatt and Lawrence Shampine. MR 0271508
- James S. W. Wong, On the generalized Emden-Fowler equation, SIAM Rev. 17 (1975), 339–360. MR 367368, DOI 10.1137/1017036
- James S. W. Wong, Remarks on nonoscillation theorems for a second order nonlinear differential equation, Proc. Amer. Math. Soc. 83 (1981), no. 3, 541–546. MR 627687, DOI 10.1090/S0002-9939-1981-0627687-0
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 467-474
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684641-2
- MathSciNet review: 684641