APPROXIMATING THE ABSOLUTELY CONTINUOUS MEASURES INVARIANT UNDER GENERAL MAPS OF THE INTERVAL

ABRAHAM BOYARSKY

Abstract. Let $\tau : I \to I$ be a nonsingular, piecewise continuous transformation which admits a unique absolutely continuous invariant measure μ with density function f^\ast. The main result establishes the fact that f^\ast can be approximated weakly by the density functions of a sequence of measures invariant under piecewise linear Markov maps $\{\tau_n\}$ which approach τ uniformly.

1. Introduction. Let τ be a nonsingular, measurable transformation from $I = [0,1]$ into itself and let \mathcal{B} denote the Lebesgue measurable subsets of I. A measure μ defined on (I, \mathcal{B}) is absolutely continuous if there exists a function $f : I \to [0, \infty)$, which is integrable with respect to Lebesgue measure m, i.e., $f \in \mathcal{L}^1(I, \mathcal{B}, m) \equiv \mathcal{L}_1$, and for which

$$\mu(S) = \int_S f(x) \, m(dx) \quad \forall S \in \mathcal{B}.$$

The measure μ is said to be invariant (under τ) if $\mu(\tau^{-1}S) = \mu(S)$ for all sets $S \in \mathcal{B}$.

The Frobenius-Perron operator $P_\tau : \mathcal{L}_1 \to \mathcal{L}_1$ has proven to be a useful tool in the study of absolutely continuous invariant measures [1, 2]. It is defined by

$$(P_\tau f)(x) = \frac{d}{dx} \int_{\tau^{-1}[0, x]} f(s) \, m(ds).$$

The importance of P_τ lies in the fact that each of its fixed points is the density of a measure invariant under τ, i.e., if $P_\tau f^\ast = f^\ast$, then

$$\mu(\cdot) = \int f^\ast(x) \, m(dx)$$

is invariant under τ [1].

In [2] a sequence of matrices $\{P_n\}$, depending on τ, is constructed and the following result obtained:

Theorem 1. Let $\tau : I \to I$ be a piecewise C^2 map with $\inf |\tau'| > 2$. If P_τ has a unique fixed point f^\ast, then the sequence $\{f_n\}$ of fixed points (regarded as functions on I) of $\{P_n\}$ converges to f^\ast in the \mathcal{L}_1-norm.
The proof of Theorem 1 depends on the fact that P_τ, where τ is expanding, reduces the variation of the function on which it acts [1]. The critical inequality is
\[\int_0^1 V_0 P_\tau f \leq \alpha \| f \| + \beta \int_0^1 f, \]
where V_0^1 denotes the variation on $[0, 1]$ and $\| \| \|$ the ℓ^1-norm. In the proof of Theorem 1, β must be less than 1 and this is truly only when $\inf |\tau'| > 2$.

When τ is nonexpanding, as for example if $\tau(x) = \gamma x(1 - x)$, where γ can take on any value between 0 and 4, there are no known results similar to Theorem 1. The technique of [2] fails because $P_\tau f$ can have infinite variation for f of bounded variation.

In this note we shall obtain a result analogous to Theorem 1 for a large class of transformations τ which admit a unique absolutely continuous invariant measure. To do this we shall use the weak topology on the space of measures and the result will be of the form: $f_n \overset{\omega}{\to} f^*$, where ω denotes weak convergence. Although this may not appear to be a strong result, it is sufficient for most statistical purposes; for example, all the moments of the density f_n will be close to the corresponding ones for f^*, and
\[\mu_n(S) = \int_S f_n(x) m(dx) \to \int_S f^*(x) m(dx) \equiv \mu(S) \]
for any $S \in \mathcal{B}$.

2. Notation. A piecewise continuous map $\tau_n: I \to I$ is called Markov if there exist points $a_0 < a_1 < \cdots < a_{n-1} < a_n$ such that for $i = 0, 1, \ldots, n - 1$, $\tau |_{I_i}$, where $I_i = (a_{i-1}, a_i)$, is a homeomorphism onto some interval (α_{i-1}, α_i). The partition $J_n = \{I^n_i\}_{i=1}^n$ is referred to as a Markov partition with respect to τ.

Now let $\tau: I \to I$ be piecewise continuous and nonsingular. Partition $I \times I$ into an $n \times n$ grid and form the piecewise linear map τ_n by joining corner points of the grid in such a way that τ_n approximates τ. Clearly τ_n will have only integer slopes and $\tau_n \to \tau$ as $n \to \infty$ in the uniform norm.

The Frobenius-Perron operator P_τ, when restricted to step functions on J_n, can be represented by a matrix [6], which we denote by P_n, its entries are given by
\[p_{ij}^n = 1/\tau_{ij}^{n} \] if $I^n_i \subset \tau_n(I^n_j)$,
\[= 0 \] otherwise.

In [3] it is shown that P_n is similar to a stochastic matrix and therefore has a fixed point f_n, which we regard as a step function on J_n. Our aim is to prove that f_n converges weakly to f^*, the density of the unique measure invariant under τ.

Definition 1. Let $\{\mu_n\}$ be a sequence of absolutely continuous probability measure on (I, \mathcal{B}) and let f_n be the density of μ_n. We shall say that $f_n(\mu_n)$ converges weakly to the density f (measure μ) if and only if for each $g \in C$, the space of real, bounded and continuous functions on I,
\[\int_I g(x)f_n(x)m(dx) \to \int_I g(x)f(x)m(dx) \]
as $n \to \infty$.

In fact it is sufficient that g is in a space D dense in C [4, Theorem 12.2]. For our purposes, we shall use C^1, the space of functions on I which have continuous first derivatives.

Definition 2. Let g be any function from I into $(-\infty, \infty)$, and let δ and ε be positive numbers. We denote by $\partial_{\delta, \varepsilon}(g)$ the set of those points $x \in I$ for which the distance between $g(x')$ and $g(x'')$ exceeds ε for some pair of points x', x'' in the open interval $(x - \delta, x + \delta)$.

A more general version of the following theorem is proved in [5].

Theorem 2. Let $\{g_n\}_{n \geq 1}$ be a sequence of bounded, real-valued and measurable functions defined on S and let α be a real number. Then a necessary and sufficient condition that $\int g_n(x)f_n(x) \, m(dx) \to \alpha$ for every sequence $\{f_n\}$ converging weakly to f is that

(i) $\{g_n\}_{n \geq 1}$ is uniformly bounded,
(ii) $\int g_n(x)f(x) \, m(dx) \to \alpha$ and
(iii) $\forall \varepsilon > 0$, $\lim_{\delta \to 0} \limsup_{n \to \infty} \int_{\partial_{\delta, \varepsilon}(g_n)} f(x) \, m(dx) = 0$.

It can be shown that (iii) holds iff

(iii') $\forall \varepsilon > 0$, for every sequence $\{\delta_k\}$ of positive numbers converging to 0, and for every subsequence $\{g_{n_k}\}$, $\int \cap_{k \geq 1} \partial_{\delta, \varepsilon}(g_{n_k}) f(x) \, m(dx) = 0$.

Lemma 1. Let g be a bounded, piecewise continuous function on $[0,1]$ whose set of discontinuity points, D, has Lebesgue measure 0. Let $\{g_n\}$ be a uniformly bounded sequence of piecewise continuous functions which approaches g uniformly. Then, if $f_n \to f$,

$$\int g_n(x)f_n(x) \, m(dx) \to \int g(x)f(x) \, m(dx)$$

as $n \to \infty$.

Proof. Since $g_n \to g$ uniformly, we have

$$\int g_n(x)f(x) \, m(dx) \to \int g(x)f(x) \, m(dx) = \alpha.$$

It remains to prove (iii'). Let $\varepsilon > 0$. Then for any sequence $\{\delta_k\}$ of positive numbers converging to 0 and every subsequence $\{g_{n_k}\}$, $\cap_{k=1}^{\infty} \partial_{\delta, \varepsilon}(g_{n_k}) \subset D$. Since $m(D) = 0$, (iii') is valid and Theorem 2 can be invoked. Q.E.D.

3. Main result.

Lemma 2. Let $\{\tau_n\}$ be a sequence of nonsingular transformations from $I \to I$ which approach τ uniformly. Let $f \in C^1$. Then

$$\int h(x)(P_{\tau_n}f)(x) \, m(dx) \to \int h(x)(P_{\tau}f)(x) \, m(dx)$$

as $n \to \infty$ for any $h \in C^1$.

PROOF. From the definition of the Frobenius-Perron operator, we have
\[
\int f_h(x) (P_{\tau_n} f(x) - P_\tau f(x)) \, m(dx)
= \int f_h(x) \left\{ \frac{d}{dx} \int_{\tau_n^{-1}[0,x]} f(y) \, m(dy) - \frac{d}{dx} \int_{\tau^{-1}[0,x]} f(y) \, m(dy) \right\} m(dx).
\]
Integrating by parts,
\[
\int f_h(x) \left\{ \frac{d}{dx} \int_{\tau_n^{-1}[0,x]} f(y) \, m(dy) \right\} m(dx)
= \int f_h(x) \left\{ \frac{d}{dx} \int_{\tau^{-1}[0,x]} f(y) \, m(dy) \right\} m(dx).
\]
Thus,
\[
\int f_h(x) (P_{\tau_n} f(x) - P_\tau f(x)) \, m(dx)
= \int \left\{ \int_{\tau_n^{-1}[0,x]} f(y) \, m(dy) - \int_{\tau^{-1}[0,x]} f(y) \, m(dy) \right\} h'(x) \, m(dx).
\]
and
\[
\left| \int f_h(x) (P_{\tau_n} f(x) - P_\tau f(x)) \, m(dx) \right|
\leq \int \left| \int_{\tau_n^{-1}[0,x] \triangle (\tau^{-1}[0,x])} f(y) \, m(dy) h'(x) \, m(dx) \right|
\]
where \(\triangle \) denotes the symmetric difference. Since \(\tau_n \to \tau \) uniformly as \(n \to \infty \), \(m((\tau_n^{-1}[0,x] \triangle (\tau_n^{-1}[0,x])) \to 0 \) as \(n \to \infty \). Since \(h'(x) \) is continuous on \(I \), it is bounded. This completes the proof. Q.E.D.

We can now state the main result of this note.

Theorem 3. Let \(\tau: I \to I \) be a nonsingular, piecewise continuous map, whose set of discontinuities has Lebesgue measure 0, and let \(\tau \) admit a unique absolutely continuous probability measure \(\mu \). Let \(\{\tau_n\} \) be a sequence of piecewise linear Markov maps which approach \(\tau \) uniformly. Let \(f_n \) denote a fixed point of \(P_{\tau_n} \equiv P_{\tau_n}, \) where \(\|f_n\| = 1 \) and \(f_n > 0 \). Then \(f_n \to f^* \) as \(n \to \infty \), where \(f^* \) is the density function of \(\mu \).

PROOF. Since \(I \) is compact, the family of probability measures \(\{\mu_n\} \), defined by \(\mu_n(E) = \int_E f_n(x) \, m(dx) \), is weakly compact. Hence there exists a subsequence \(\{f_{n_k}\} \) and a function \(f: I \to I \) such that \(f_{n_k} \to f \).

Now, for any \(h \in C^1 \),
\[
\left| \int f_h(x) (f(x) - P_{\tau_n} f(x)) \, m(dx) \right|
\leq \left| \int f_h(x) (f(x) - f_{n_k}(x)) \, m(dx) \right| + \left| \int f_h(x) (f_{n_k}(x) - P_{\tau_n} f_{n_k}(x)) \, m(dx) \right|
+ \left| \int f_h(x) (P_{\tau_n} f_{n_k}(x) - P_{\tau_n} f(x)) \, m(dx) \right| + \left| \int f_h(x) (P_{\tau_n} f(x) - P_{\tau_n} f(x)) \, m(dx) \right|.
\]
The first term approaches 0 since \(f_n \overset{\omega}{\to} f \). Since \(P_n f_n = f_n \), the second term is identically 0. The fourth term approaches 0 by virtue of Lemma 2. Consider now the third term,

\[
\int_0^1 h(x) \frac{d}{dx} \left(\int_{\tau_n^{-1}[0, x]} \left(f_n(y) - f(y) \right) m(dy) \right) m(dx)
\]

\[
= \int_0^1 \left(\int_{\tau_n^{-1}[0, x]} \left(f_n(y) - f(y) \right) m(dy) \right) h'(x) m(dx).
\]

Fix \(x \in [0, 1] \) and consider

\[
A_n(x) = \int_{\tau_n^{-1}[0, x]} \left(f_n(y) - f(y) \right) m(dy)
\]

\[
= \int_{\tau_n^{-1}[0, x]} f_n(y) m(dy) - \int_{\tau_n^{-1}[0, x]} f(y) m(dy).
\]

Now \(\chi_{\tau_n^{-1}[0, x]} \) is a piecewise continuous step function which approaches \(\chi_{\tau^{-1}[0, x]} \) uniformly as \(n \to \infty \). Clearly

\[
\int_{\tau_n^{-1}[0, x]} f(y) m(dy) - \int_{\tau_n^{-1}[0, x]} f(y) m(dy) \equiv 0
\]

as \(n \to \infty \). Thus, it follows from Lemma 1 that \(A_n(x) \to 0 \) as \(n \to \infty \). Note that \(|A_n(x)| \leq 2 \). Since \(h \in C^1 \), \(|h'(x)| \leq L < \infty \). Hence, the Dominated Convergence Theorem implies that

\[
\int_0^1 A_n(x) h'(x) m(dx) \to 0
\]

as \(n \to \infty \). We have, therefore, established, for any \(h \in C^1 \),

\[
\int_I h(x)(f(x) - P_n(x)) m(dx) = 0.
\]

This means \(P_n f(x) = f(x) \) m.a.e. But \(f^* \) is the unique fixed point of \(P \). Thus \(f = f^* \) m.a.e., and \(f_n \overset{\omega}{\to} f^* \). We have therefore shown that any weakly convergent subsequence of \(\{f_n\} \) converges weakly to \(f \). Hence \(f_n \overset{\omega}{\to} f \) as \(n \to \infty \). Q.E.D.

Remarks. (1) Theorem 1 establishes a necessary condition for the existence of an absolutely continuous invariant for a general map \(\tau: I \to I \).

(2) Classes of maps \(\tau: I \to I \) which are nonexpanding and which have unique absolutely continuous invariant measures can be found in [7–10]. Theorem II.8.3 of [10] describes some of the results in [7].

References

Department of Mathematics, Loyola Campus, Concordia University, Montreal, Canada H4B 1R6