Approximating the absolutely continuous measures invariant under general maps of the interval
HTML articles powered by AMS MathViewer
- by Abraham Boyarsky
- Proc. Amer. Math. Soc. 87 (1983), 475-480
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684642-4
- PDF | Request permission
Abstract:
Let $\tau :I \to I$ be a nonsingular, piecewise continuous transformation which admits a unique absolutely continuous invariant measure $\mu$ with density function ${f^ * }$. The main result establishes the fact that ${f^ * }$ can be approximated weakly by the density functions of a sequence of measures invariant under piecewise linear Markov maps $\left \{ {{\tau _n}} \right \}$ which approach $\tau$ uniformly.References
- A. Lasota and James A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488 (1974). MR 335758, DOI 10.1090/S0002-9947-1973-0335758-1
- T. Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J. Approximation Theory 17 (1976), no. 2, 177–186. MR 412689, DOI 10.1016/0021-9045(76)90037-x
- Nathan Friedman and Abraham Boyarsky, Matrices and eigenfunctions induced by Markov maps, Linear Algebra Appl. 38 (1981), 141–147. MR 636032, DOI 10.1016/0024-3795(81)90015-X G. Choquet, Lectures on analysis, Vol. I, Benjamin, New York, 1969.
- Flemming Topsøe, Preservation of weak convergence under mappings, Ann. Math. Statist. 38 (1967), 1661–1665. MR 219097, DOI 10.1214/aoms/1177698600
- Abraham Boyarsky and Manny Scarowsky, On a class of transformations which have unique absolutely continuous invariant measures, Trans. Amer. Math. Soc. 255 (1979), 243–262. MR 542879, DOI 10.1090/S0002-9947-1979-0542879-2 M. Misiurewicz, Absolutely continuous invariant measures for certain maps of the interval, Inst. Hautes Ëtudes Sci. Publ. Math. 52 (1980).
- D. Ruelle, Applications conservant une mesure absolument continue par rapport à $dx$ sur $[0,1]$, Comm. Math. Phys. 55 (1977), no. 1, 47–51 (French, with English summary). MR 467840
- Rufus Bowen, Invariant measures for Markov maps of the interval, Comm. Math. Phys. 69 (1979), no. 1, 1–17. MR 547523
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1, Birkhäuser, Boston, Mass., 1980. MR 613981
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 475-480
- MSC: Primary 28D05; Secondary 41A30, 58F11, 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684642-4
- MathSciNet review: 684642