Jeux topologiques et espaces de Namioka
HTML articles powered by AMS MathViewer
- by Jean Saint-Raymond
- Proc. Amer. Math. Soc. 87 (1983), 499-504
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684646-1
- PDF | Request permission
Abstract:
The aim of this paper is to improve certain recent results of J. P. R. Christensen, by using and extending the methods of topological games introduced by him. We study the relationship between Baire spaces and Namioka spaces, proving that these two notions agree in the case of metrizable spaces.References
- Jean Calbrix and Jean-Pierre Troallic, Applications séparément continues, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 13, A647–A648 (French, with English summary). MR 534521 G. Choquet, Lectures on analysis, Vol. 1, Benjamin, New York and Amsterdam, 1969.
- Jens Peter Reus Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), no. 3, 455–461. MR 612739, DOI 10.1090/S0002-9939-1981-0612739-1 —, Remarks on Namioka spaces and R. E. Johnson’s theorem on the norm separability of the range of certain mappings, (a paraître). —, Theorems of Namioka and Johnson type for u.s.c.o. set-valued mappings (a paraître).
- I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531. MR 370466, DOI 10.2140/pjm.1974.51.515
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 499-504
- MSC: Primary 54E99; Secondary 90D99
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684646-1
- MathSciNet review: 684646