$q$-probability distributions via an extension of the Bernoulli process
HTML articles powered by AMS MathViewer
- by Philip Feinsilver
- Proc. Amer. Math. Soc. 87 (1983), 508-515
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684648-5
- PDF | Request permission
Abstract:
One-parameter extensions of the Binomial, Negative Binomial, Poisson, Geometric and Gamma distributions are derived via an extension of the standard Bernoulli counting scheme. The method is to examine the elementary "potential theory" for the basic process. Some interesting extensions to continuous time are mentioned also.References
- George E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its Applications, Vol. 2, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1976. MR 0557013
- Richard Askey, Ramanujan’s extensions of the gamma and beta functions, Amer. Math. Monthly 87 (1980), no. 5, 346–359. MR 567718, DOI 10.2307/2321202
- J. Cigler, Operatormethoden für $q$-Identitäten, Monatsh. Math. 88 (1979), no. 2, 87–105 (German, with English summary). MR 551934, DOI 10.1007/BF01319097
- Philip Feinsilver, Commutators, anti-commutators and Eulerian calculus, Rocky Mountain J. Math. 12 (1982), no. 1, 171–183. MR 649750, DOI 10.1216/RMJ-1982-12-1-171
- I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by Scripta Technica, Inc. MR 0247660
- Wolfgang Hahn, Über die höheren Heineschen Reihen und eine einheitliche Theorie der sogenannten speziellen Funktionen, Math. Nachr. 3 (1950), 257–294 (German). MR 40557, DOI 10.1002/mana.19490030502
- F. H. Jackson, Basic integration, Quart. J. Math. Oxford Ser. (2) 2 (1951), 1–16. MR 41187, DOI 10.1093/qmath/2.1.1
- Lucy Joan Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966. MR 0201688
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 508-515
- MSC: Primary 60J05; Secondary 33A35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684648-5
- MathSciNet review: 684648