Totally analytic spaces under $V=L$
HTML articles powered by AMS MathViewer
- by Zoltán Balogh and Heikki Junnila
- Proc. Amer. Math. Soc. 87 (1983), 519-527
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684650-3
- PDF | Request permission
Abstract:
The following results obtain under the axiom of constructibility $(V = L)$: Assume that every subset of a topological space $X$ is analytic. Then $X$ is $\sigma$-left-separatcd. Moreover, if the character of $X$ is $\leqslant {\omega _1}$, then $X$ is $\sigma$-discrete. Assume that $X$ is a perfectly normal space of character $\leqslant {\omega _1}$ such that every subset of $X$ belongs to the $\sigma$-algebra generated by the analytic subsets of $X$. Then $X$ is $\sigma$-discrete.References
- A. V. Arhangel′skiĭ and S. J. Nedev, Some remarks on semi-metrizable spaces and their subspaces, C. R. Acad. Bulgare Sci. 31 (1978), no. 5, 499–500. MR 514910
- William Fleissner, Normal Moore spaces in the constructible universe, Proc. Amer. Math. Soc. 46 (1974), 294–298. MR 362240, DOI 10.1090/S0002-9939-1974-0362240-4
- D. H. Fremlin, R. W. Hansell, and H. J. K. Junnila, Borel functions of bounded class, Trans. Amer. Math. Soc. 277 (1983), no. 2, 835–849. MR 694392, DOI 10.1090/S0002-9947-1983-0694392-0
- J. Gerlits and I. Juhász, On left-separated compact spaces, Comment. Math. Univ. Carolinae 19 (1978), no. 1, 53–62. MR 487982
- R. W. Hansell, Some consequences of $(V=L)$ in the theory of analytic sets, Proc. Amer. Math. Soc. 80 (1980), no. 2, 311–319. MR 577766, DOI 10.1090/S0002-9939-1980-0577766-0
- Heikki J. K. Junnila, Neighbornets, Pacific J. Math. 76 (1978), no. 1, 83–108. MR 482677, DOI 10.2140/pjm.1978.76.83
- Heikki J. K. Junnila, On $\sigma$-spaces and pseudometrizable spaces, Topology Proc. 4 (1979), no. 1, 121–132 (1980). Edited by Ross Geoghegan. MR 583695
- G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), no. 2, 145–152. MR 600588, DOI 10.4064/fm-110-2-145-152
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 87 (1983), 519-527
- MSC: Primary 54H05; Secondary 03E35
- DOI: https://doi.org/10.1090/S0002-9939-1983-0684650-3
- MathSciNet review: 684650