EMBEDDINGS IN MINIMAL HAUSDORFF SPACES

J. VERMEER

Abstract. We show that not every semiregular space is embeddable as an open and dense set of some minimal Hausdorff space. Also a space is constructed for which it is not decidable in Z.F.C. whether such an embedding exists.

1. Introduction. In this paper we investigate the following question.

Question. Is a semiregular space \(X \) embeddable in a minimal Hausdorff space as a dense and open subset?

(Note that a Hausdorff space is called minimal Hausdorff if it contains no strictly coarser Hausdorff topology and that a space \(Y \) is called semiregular if \(\{ \text{int} (\text{cl} A) : A \subseteq Y \} \) is an open basis for \(Y \).)

This question appeared in the paper [Ve] and was motivated by the following embedding theorem.

Theorem A. Let \(X \) be a semiregular space. Then:

(i) [Ka] \(X \) is embeddable as a dense subset of a minimal Hausdorff space.

(ii) [Ve] \(X \) is embeddable as an open subset of a minimal Hausdorff space.

(iii) [Ve] The space \(X \oplus X \) — two disjoint copies of \(X \) — is embeddable as a dense and open subspace of a minimal Hausdorff space. □

We present two examples which show the following.

Example 1. There exists a zero-dimensional Lindelöf space \(X \) for which the answer to the question is negative.

Example 2. There exists a zero-dimensional Lindelöf space \(X \) for which the question cannot be answered in Z.F.C. without additional assumptions.

For these examples we use the following notions.

A function \(f : X \to Y \) is called irreducible, whenever \(f \) is surjective and \(f(A) \neq Y \), for every closed subset \(A \subseteq X \).

A function \(f : X \to Y \) is called \(\theta \)-continuous if for each \(x \in X \) and each neighborhood \(U \) of \(f(x) \), there is a neighborhood \(V \) of \(x \) such that \(f(\text{cl} V) \subseteq \text{cl} U \).

The absolute of a space \(X \) is the unique semiregular and extremally disconnected space \(EX \) which can be mapped onto \(X \) by a perfect, irreducible and \(\theta \)-continuous function \(\pi \).
If αD is a minimal Hausdorff extension of a discrete space D, then $E\alpha D = \beta D$ and the map $\pi: E\alpha D \to \alpha D$ is the (unique) θ-continuous extension of $\text{id}: D \to \alpha D$ to βD.

The next theorem is the key to the examples.

Theorem B [VeW]. Let X be a compact space. Let $f: X \to Y$ be a compact and irreducible function onto a set Y. Then the collection \{ $f(B)$: B is a closed subset of X \} is a closed base for a topology $\theta(f)$ on Y, the space $(Y, \theta(f))$ is minimal Hausdorff and the function $f: X \to (Y, \theta(f))$ is θ-continuous.

Remark. The definitions of all undefined notions we used in the previous theorem can be found in the excellent survey paper [Wo] of R. G. Woods.

2. **The example.** Let D be a discrete space with $\text{card } D \geq 2^{2^{\omega_0}}$ and let $X = D \cup \{\omega\}$ be the one-point Lindelöfication of D. In particular, the collection \{ $D' \cup \{\omega\}$: D' a cocountable subset of D \} is a local base at ω in X.

Theorem C. If $\text{card } X > 2^{2^{\omega_0}}$, then X is not embeddable as a dense and open subset in a minimal Hausdorff space.

Proof. Assume the opposite, say X is embedded in the minimal Hausdorff space Y as a dense and open subset.

Then the space Y can be considered as a minimal Hausdorff extension of the discrete space D, say $Y = \alpha D$ and $D \subset X \subset \alpha D$.

Then $E\alpha D = \beta D$ and the absolute function $\pi: \beta D \to \alpha D$ is the unique θ-continuous extension of $\text{id}: D \to \alpha D$ to βD.

We observe the following facts:

(i) Since the function $\pi: \beta D \to \alpha D$ is perfect and irreducible and the space αD is minimal Hausdorff, the collection \{ $\pi(B)$: B is a closed subset of βD \} is a closed base for the topology on αD.

(ii) $\pi^{-1}\{\omega\} = \{ \mathcal{F}: \mathcal{F} \text{ an ultrafilter on } D \text{ with: } \forall F \in \mathcal{F}: \text{card } F > \omega_0 \} \subset \beta D - D$.

(iii) If B is a compact subset of βD with $B \cap \pi^{-1}\omega = \emptyset$, then it is easy to see that $\text{card } B \leq 2^{2^{\omega_0}}$.

In particular, $\text{card } \pi^{-1}\{d\} \leq 2^{2^{\omega_0}}$ for each $d \in \alpha D - X$.

(iv) Since $\text{card } D > 2^{2^{\omega_0}}$, $\text{card}(\beta D - \pi^{-1}\{\omega\}) > 2^{2^{\omega_0}}$. Since X is an open subset of αD, then by (i), there exists a compact subset $B \subset \beta D$ such that $\alpha D - X \subset \pi(B) \subset \alpha D - \{\omega\}$. However, by (iii), $B \leq 2^{2^{\omega_0}}$ and $\text{card } \pi^{-1}\{p\} \leq 2^{2^{\omega_0}}$ for each $p \in \alpha D - \{\omega\}$.

Consequently, $\text{card } \pi^{-1}(\pi(B)) \leq 2^{2^{\omega_0}}$. We conclude, from (iv), that $\beta D - \pi^{-1}\{\omega\}$ is not a subset of $\pi^{-1}(\pi(B))$, which contradicts that $\alpha D - X \subset \pi(B)$. This completes the proof of the theorem.

Theorem D. If $\text{card } X = 2^{2^{\omega_0}}$, the space X is embeddable as a dense and open subset of a minimal Hausdorff space.

Proof. We construct such an extension of X as follows. Consider the space βD and define the closed subset $A \subset \beta D - D$ by

$$A = \{ \mathcal{F}: \mathcal{F} \text{ is an ultrafilter on } D \text{ and } \text{card } F > \omega_0 \text{ for each } f \in \mathcal{F} \}.$$
Note that $\beta D - A = \bigcup \{ \text{cl } D' : D' \text{ is a countable subset of } D \}$. We conclude that $\text{card}(\beta D - D - A) = (2^{2^{\aleph_0}})^{\omega_0} \cdot 2^{2^{\aleph_0}} = 2^{2^{\aleph_0}}$. Fix a countable set $\mathcal{N} \subseteq D$. Then $\text{cl } \mathcal{N} \cap A = \emptyset$ and $\text{card}(\text{cl } \mathcal{N} - \mathcal{N}) = 2^{2^{\aleph_0}}$. Let $g: \text{cl } \mathcal{N} - N \rightarrow \beta D - D - A - \text{cl } \mathcal{N}$ be a bijection between these sets. Define a partition E of βD by

$$E = \{ \{ d \} : d \in D \} \cup \{ A \} \cup \{ \{ x, g(x) \} : x \in \text{cl } \mathcal{N} - \mathcal{N} \}.$$

Let Y denote the set $\beta D \mod E$. The corresponding quotient function $f: \beta D \rightarrow Y$ is a compact and irreducible surjection.

Consider the minimal Hausdorff topology $\theta(f)$ on Y, as defined in Theorem B. The following properties are easy to verify:

(i) $f(D)$ is an open discrete and dense subset of Y,
(ii) the subspace $f(D) \cup \{ A \}$ of Y is homeomorphic to the space X,
(iii) $f(D) \cup \{ A \}$ is dense in Y (since $f(D) \subseteq f(D \cup A)$), and
(iv) $f(A) \cup \{ A \}$ is open in Y (since $Y - f(D \cup A) = f(\text{cl } \mathcal{N} - \mathcal{N})$).

These properties show that we have embedded the space X as a dense and open subset of the minimal Hausdorff space Y.

Remarks. There are many cardinals χ, e.g. $\chi = 2^{2^{\omega}}$, $\chi = \aleph_3$, for which it is consistent to assume that $\chi > 2^{2^{\omega}}$ and consistent to assume that $\chi = 2^{2^{\omega}}$. Thus, if D is a discrete space of cardinality χ, then X can be embeddable, by Theorem D, or not embeddable, by Theorem C, as a dense and open subspace of some minimal Hausdorff space depending on set-theoretic assumptions of whether $\chi = 2^{2^{\omega}}$ or $\chi > 2^{2^{\omega}}$.

I would like to thank the referee for his advice.

References

Department of Mathematics, Free University, De Boelelaan 1081, 1007 MC, Amsterdam, The Netherlands