ADJUNCTION SPACES OF MONOTONICALLY NORMAL SPACES
AND SPACES DOMINATED BY
MONOTONICALLY NORMAL SUBSETS

TAKUO MIWA

ABSTRACT. In this paper, we shall prove the following results: (1) the
adjunction space of two monotonically normal spaces is also monotonically
normal, (2) a topological space is monotonically normal if and only if it is
dominated by a collection of monotonically normal subsets.

The class of monotonically normal spaces was introduced by P. Zenor, and
studied by P. Zenor, R. Heath and D. Lutzer [5], C. R. Borges [2, 3] and others.
In this paper, we shall first prove that the adjunction space of two monotonically
normal spaces is monotonically normal, and as an immediate corollary that a
topological space is an AR(M.N) (resp. ANR(M.N)) if and only if it is an AE(M.N)
(resp. ANE(M.N)), where M.N is the class of all monotonically normal spaces.

In [5, p. 483], it was shown that if a topological space X can be covered by a
locally finite (or even hereditarily closure preserving) collection of closed monotonically
normal subspaces, then X is monotonically normal. Concerning this result, it
was asked whether a topological space X must be monotonically normal provided
that X is dominated by a collection such subspaces. In §2, we shall answer this
question affirmatively.

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces.
Clx denotes the closure operator in a space X.

1. Adjunction spaces. In this paper, as the definition of monotonically normal
space, we exclusively use [5, Lemma 2.2(a)]; i.e. a space X is monotonically normal
if there is a function G which assigns to each pair (A, B) of separated subsets of X
an open set G(A, B) satisfying

(i) \(A \subset G(A, B) \subset Cl_x G(A, B) \subset X - B. \)
(ii) if \((A', B')\) is a pair of separated subsets having \(A \supset A'\) and \(B \supset B'\), then
\[G(A, B) \subset G(A', B'), \]
where two subsets A, B of X are separated if \(A \cap Cl_x B = \emptyset, Cl_x A \cap B = \emptyset.\)

The function G is called a monotone normality operator for X. We put \(G(\emptyset, B) = \emptyset, G(A, \emptyset) = X,\) where \(A \neq \emptyset.\) These are used in the proof of Theorem 1.1; for instance, \(G_2(A_Y, B_Y, G_1(A_1, B_1)\) if \(A_Y = \emptyset, B_Y = \emptyset, A_1 = \emptyset\) or \(B_1 = \emptyset.\)

THEOREM 1.1. Let \(X\) and \(Y\) be monotonically normal spaces, \(F\) a closed subset
of \(X\) and \(f: F \rightarrow Y\) a continuous mapping. Then the adjunction space \(X \cup_f Y = Z\)
is monotonically normal.
ADJUNCTION SPACES OF MONOTONICALLY NORMAL SPACES

PROOF. Let $h: X \to Z$, $k: Y \to Z$ be the natural projections. By definition of $X \cup Y$, $U \subset Z$ is open (closed) if and only if $h^{-1}(U)$ and $k^{-1}(U)$ are open (closed); furthermore, k and $h|X - F$ are homeomorphisms into. For convenience, for a subset A of Z, we let $A_X = h^{-1}(A)$, $A_Y = k^{-1}(A)$.

Let G_1 and G_2 be monotone normality operators for X and Y, respectively, and (A, B) a pair of separated subsets of Z. We shall show that there is a monotone normality operator G for Z such that $k^{-1}(G(A, B)) = G_2(A_Y, B_Y)$.

For a pair (A, B) of separated subsets of Z, (A_Y, B_Y) is a pair of separated subsets of Y. Let

$$A_1 = A_X \cup f^{-1}(G_2(A_Y, B_Y)),$$
$$B_1 = (F - f^{-1}(C_Y G_2(A_Y, B_Y))) \cup B_X.$$

Then (A_1, B_1) is a pair of separated subsets of X. Since there is an open subset $G_1(A_1, B_1)$ of X such that

$$A_1 \subset G_1(A_1, B_1) \subset Cl_X G_1(A_1, B_1) \subset X - B_1,$$

there is an open subset U_A of X such that

$$U_A - F = G_1(A_1, B_1) - F, \quad U_A \cap F = f^{-1}(G_2(A_Y, B_Y)).$$

Let $G(A, B) = h(U_A) \cup k(G_2(A_Y, B_Y))$. Then it is easily seen that G is a monotone normality operator for Z such that $k^{-1}(G(A, B)) = G_2(A_Y, B_Y)$. This completes the proof.

AR(C) (resp. ANR(C)) is the abbreviation for absolute (resp. neighborhood) retract for the class C and AE(C) (resp. ANE(C)) the abbreviation for absolute (resp. neighborhood) extensor for the class C. For these definitions, see [6]. Note that, in [4], ES(C) and NES(C) are used instead of AE(C) and ANE(C), respectively.

COROLLARY 1.2. Let X be a monotonically normal space. Then X is an AR(MAN) (resp. ANR(MAN)) if and only if X is an AE(MAN) (resp. ANE(MAN)).

PROOF. This follows from Theorem 1.1, using the same method of proof of Theorem 8.1 in [4].

2. Spaces dominated by monotonically normal subsets. We start by reproducing Definition 8.1 in [7].

DEFINITION 2.1. Let X be a space, and B a collection of closed subsets of X. Then B dominates X if, whenever $A \subset X$ has a closed intersection with every element of some subcollection B_1 of B which covers A, then A is closed.

In [7] (resp. [1]), it is shown that a space is paracompact (resp. stratifiable) if and only if it is dominated by a collection of paracompact (resp. stratifiable) subspaces. We prove the following:

THEOREM 2.2. A space is monotonically normal if and only if it is dominated by a collection of monotonically normal subsets.

PROOF. Since the "only if" part is trivial, we prove the "if" part. Let B be a dominating collection of monotonically normal subsets of a space X. Consider the class G of all pairs of the form (C_α, G_α), where $C_\alpha \subset B$, and G_α is a monotone normality operator for $C_\alpha = \bigcup C_\alpha$. (Throughout this proof, $\bigcup C_\gamma$ will be denoted by C_γ for any $C_\gamma \subset B$.) We partially order G by letting $(C_\alpha, G_\alpha) \leq (C_\beta, G_\beta)$ whenever $C_\alpha \subset C_\beta$ and, for each pair (A, B) of separated subsets of C_β, $G_\beta(A, B) \cap C_\alpha = G_\alpha(A \cap C_\alpha, B \cap C_\alpha)$.

We now show that any linearly ordered subfamily \(\{(C_\alpha, G_\alpha) : \alpha \in \Lambda \} \) of \(\mathcal{G} \) has an upper bound \((C_\beta, G_\beta)\). Let \(\mathcal{C}_\beta = \bigcup \{C_\alpha : \alpha \in \Lambda \} \). For each pair \((A, B)\) of separated subsets of \(C_\beta \), let

\[
G_\beta(A, B) = \bigcup \{G_\alpha(A \cap C_\alpha, B \cap C_\alpha) : \alpha \in \Lambda \},
\]

and let us show that \(G_\beta \) is a monotone normality operator for \(C_\beta \). In fact, first, since \(G_\beta(A, B) \cap C_\alpha = G_\alpha(A \cap C_\alpha, B \cap C_\alpha) \) for each \(\alpha \in \Lambda \), \(G_\beta(A, B) \) is open in \(C_\beta \). Next, let

\[
K_\beta = \bigcup \{\text{Cl}_{C_\alpha} G_\alpha(A \cap C_\alpha, B \cap C_\alpha) : \alpha \in \Lambda \}.
\]

Clearly \(G_\beta(A, B) \subseteq K_\beta \subseteq \text{Cl}_{C_\beta} G_\beta(A, B) \). For each \(\alpha \in \Lambda \),

\[
K_\beta \cap C_\alpha = \text{Cl}_{C_\alpha} G_\alpha(A \cap C_\alpha, B \cap C_\alpha),
\]

since \(\{(C_\alpha, G_\alpha) : \alpha \in \Lambda \} \) is linearly ordered. Hence \(K_\beta \) is closed in \(C_\beta \) and \(K_\beta = \text{Cl}_{C_\beta} G_\beta(A, B) \). Furthermore, since

\[
\text{Cl}_{C_\alpha} G_\alpha(A \cap C_\alpha, B \cap C_\alpha) \subseteq C_\alpha - B \cap C_\alpha,
\]

it holds that \(K_\beta \subseteq C_\beta - B \). Thus \(G_\beta \) is a monotone normality operator for \(C_\beta \).

By Zorn’s Lemma, let \((C_0, G_0)\) be a maximal element of \(\mathcal{G} \). To complete the proof we need only show that \(C_0 = B \). Suppose not. Then there exists \(E \in B - C_0 \). Let \(C_1 = C_0 \cup \{E\} \). Now \(C_0 \) and \(E \) are closed monotonically normal subspaces of \(C_1 = C_0 \cup E \), and hence \(C_1 \) is monotonically normal by Theorem 1.1. Thus, by the proof of Theorem 1.1, one may obtain a monotone normality operator \(G_1 \) of \(C_1 \) such that, for each pair \((A, B)\) of separated subsets of \(C_1 \), \(G_1(A, B) \cap C_0 = G_0(A \cap C_0, B \cap C_0) \). Consequently, \((C_0, G_0) \prec (C_1, G_1)\), contradicting the maximality of \((C_0, G_0)\). Hence \(C_0 = B \), and \(X \) is monotonically normal.

REFERENCES