STABLE HOMOTOPY TYPES
OF STUNTED REAL PROJECTIVE SPACES

TEIICHI KOBAYASHI

Abstract. The purpose of this note is to improve partly necessary conditions for two stunted real projective spaces to be of the same stable homotopy type given in [4].

1. Introduction. Let RP^n be the n-dimensional real projective space. If $k \geq 0$, we have natural inclusion $RP^{n-1} \subset RP^{n+k}$, and denote by RP^{n+k} the quotient space RP^{n+k}/RP^{n-1}. S. Feder, S. Gitler and M. E. Mahowald in [4] have obtained necessary and sufficient conditions for the stunted real projective spaces RP^{n+k} and RP^{m+k} to be of the same stable homotopy type for a great number of values of n, m and k. Let $\phi(k)$ be the number of integers s such that $0 < s < k$ and $s \equiv 0, 1, 2$ or 4 (mod 8), and let $A_k = 2^{\phi(k)}$.

Theorem 1. Let k and n be integers such that $n \equiv 0$ (mod $A_k/2$). If $n \equiv m$ (mod A_k), then the spaces RP^{n+k} and RP^{m+k} are not of the same stable homotopy type.

Theorem 1 partly improves Theorem 1.1 in [4]. For the converse of the result, it is well known (cf. [1–3]) that if $n \equiv m$ (mod A_k), then the spaces RP^{n+k} and RP^{m+k} are of the same stable homotopy type.

2. Proof of Theorem 1. In case $k \leq 8$, we can prove without difficulty that if RP^{n+k} and RP^{m+k} are of the same stable homotopy type, then $n \equiv m$ (mod A_k), using naturality of the squaring operations.

Consider the case $k > 8$. Suppose $m < n$ and there is a homotopy equivalence f: $S^t RP^{n+k} \to S^{t+n-m} RP^{m+k}$ for some integer $t \geq 0$. Then $n \equiv m$ (mod $A_k/2$), by Theorem 1.1 in [4] (cf. also [5 and 6]). We may assume $t \equiv 0$ (mod 8), and so $t + n - m \equiv 0$ (mod 8). Put $t = 8u$ and $t + n - m = 8v$ and let

$I^u: \widetilde{KO}(RP^{n+k}) \to \widetilde{KO}(S^t RP^{n+k}), \quad I^v: \widetilde{KO}(RP^{m+k}) \to \widetilde{KO}(S^{8v}RP^{m+k})$
be the isomorphisms defined by the Bott periodicity. If \(l \equiv 0 \pmod{4} \), we have by [1, Theorem 7.4],

\[
\overline{KO}(RP^{l+k}) = \mathbb{Z} \oplus \overline{KO}(RP^{l+1}) = \mathbb{Z} \oplus \mathbb{Z}_{A_k}.
\]

Denote by \(\nu^{(l)} \) and \(\lambda^{(l+1)} \) the generators of the first summand and the second summand, respectively. We may put

\[
f^*I^v\nu^{(m)} = \epsilon I^u\nu^{(n)} + a I^u\lambda^{(n+1)}, \quad f^*I^v\lambda^{(m+1)} = (2b + \epsilon) I^u\lambda^{(n+1)},
\]

where \(a \) and \(b \) are some integers and \(\epsilon = \pm 1 \). Let \(\Psi^3 \) be the third Adams operation. Then by [1, Theorem 5.1, Corollary 5.3 and Theorem 7.4], we have

\[
\Psi^3 f^*I^v\nu^{(m)} = f^*\Psi^3 I^v\nu^{(m)} = 3^4 I^v\nu^{(m)} = 3^4 (3^{m/2} \nu^{(m)} + 2^{-1}(3^{m/2} - 1)\lambda^{(m+1)})
\]

\[
= 3^4 (3^{m/2} (\epsilon I^u\nu^{(n)} + a I^u\lambda^{(n+1)}) + 2^{-1}(3^{m/2} - 1)(2b + \epsilon) I^u\lambda^{(n+1)})
\]

\[
= \epsilon 3^4 u^{n/2} I^v\nu^{(n)} + 3^4 u^{3/2} (3^{m/2} - 1) b + 2^{-1}(3^{m/2} - 1)\epsilon I^u\lambda^{(n+1)}.
\]

On the other hand,

\[
\Psi^3 f^*I^v\nu^{(m)} = \epsilon \Psi^3 I^u\nu^{(n)} + a \Psi^3 I^u\lambda^{(n+1)} = \epsilon 3^4 I^u\nu^{(n)} + a 3^4 I^u\nu^{(n+1)}
\]

\[
= \epsilon 3^4 I^u (3^{n/2} \nu^{(n)} + 2^{-1}(3^{n/2} - 1)\lambda^{(n+1)}) + 3^4 a I^u\lambda^{(n+1)}
\]

\[
= \epsilon 3^4 u^{n/2} I^v\nu^{(n)} + 3^4 u^{3/2} (2^{-1}(3^{n/2} - 1)\epsilon + a) I^u\lambda^{(n+1)}.
\]

We have, therefore,

\[
3^{n/2} a + 3^{(n-m)/2} (3^{m/2} - 1) b + 2^{-1}(3^{m/2} - 1)\epsilon \equiv 2^{-1}(3^{n/2} - 1)\epsilon + a
\]

\[(\text{mod } A_k),\]

because the order of the element \(I^u\lambda^{(n+1)} \) is equal to \(A_k = 2^k \). Since \(n \equiv m \equiv 0 \pmod{A_k/2} \), \(3^{n/2} - 1 \equiv 3^{m/2} - 1 \equiv 0 \pmod{A_k} \) by [1, Lemma 8.1]. Hence we obtain \(3^{(n-m)/2} - 1 \equiv 0 \pmod{2 A_k} \), and so we get \(n - m \equiv 0 \pmod{A_k} \) by [1, Lemma 8.1].

3. Remark. Combining Theorem 1 with known results, we have

Corollary 2. Let \(k \leq 8 \), or \(k > 8 \) and \(n \equiv 0 \pmod{A_k/2} \). Then \(RP^{n+k} \) and \(RP^{m+k} \) are of the same stable homotopy type if and only if \(n \equiv m \pmod{A_k} \).

References

Department of Mathematics, Faculty of Science, Kochi University, Kochi 780, Japan